幼儿园学习网

展开

首页>教学设计一等奖

圆柱体的面积教学设计一等奖

栏目:教学设计一等奖

这是圆柱体的面积教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

圆柱体的面积教学设计一等奖

圆柱体的面积教学设计一等奖第 1 篇

 教学内容:教材第5~6页例2、例3和练一练,练习一第48题。

  教学要求:

  1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

  教学重点:掌握圆柱侧面积的计算方法。

  教学难点:能根据实际情况正确地进行计算。

  教学过程:

  一、复习铺垫

  1.复习圆柱的特征。提问:圆柱有什么特征?

  2.计算下面圆柱的侧面积(口头列式):

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3.提问:圆柱的一个底面面积怎样计算?

  4.引入新课。

  我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

  二、教学新课

  1.认识表面积计算方法。

  (1) 请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。

  (2)教师演示。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  (3)得出公式。

  请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

  2.教学例2。

  出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

  3.组织练习。

  做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

  4.教学例3。

  出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

  5.组织练习。

  (1)下面的数用进一法保留整数,各是多少?(口答)

  162.3 29.4 3.8 42.6

  (2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

  三、课堂小结

  这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。

  四、布置作业

  课堂作业:练习一第5~7题。

圆柱体的面积教学设计一等奖第 2 篇

 设计说明

  1.在情境中建立数学与生活的联系。

  《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

  2.在操作中渗透转化思想。

  转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

  3.在应用中培养学生解决问题的能力。

  “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。

  课前准备

  教师准备 多媒体课件

  学生准备 纸质圆柱形物体 剪刀 长方形纸板

  教学过程

  ⊙提出问题、设疑导入

  1.说一说。

  师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

  2.想一想。

  课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

  师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

  3.汇报。

  小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

  4.交代学习目标,导入新课。

  师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

  设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

圆柱体的面积教学设计一等奖第 3 篇

 教学目标人教版圆柱的表面积优秀教案

  1:理解圆柱体侧面积和表面积的含义。

  2:通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  3:体验成功与失败的收获,体会合作的愉悦

  教学重点:动手操作展开圆柱的侧面积

  教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  教具准备: 圆柱表面展开图

  学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。 教学过程

  一、创设情境,引起兴趣。

  出示:牛奶盒,纸箱,可比克。

  提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

  (2)制作这些包装盒,至少需要多大面积的材料?(指名说) 师:谁能说说上一节课你学过圆柱体的哪些知识?

  生:...........

  师:请同学们拿出你自制的圆柱体模型,动手摸一摸

  生:动手摸圆柱体

  师:谁能说一说你摸到的是哪些部分?

  生:..........

  师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

  二、探索交流,解决问题。

  导语:圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(指名说)

  提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

  研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)

  (展开的.形状可能是长方形、平行四边形、正方形等)

  1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的.方式验证刚才的猜想。

  2.操作活动:(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

  (2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

  3.小组交流能用已有的知识计算它的面积吗?

  4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  板书:

  长方形的面积=长 × 宽

  ↓ ↓↓

  圆柱的侧面积 =底面周长× 高

  所以,圆柱的侧面积=底面周长×高

  S 侧= C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  练习

  求圆柱的侧面积(只列式不计算)

  1. 底面周长是1.6米,高是0.7米

  2. 底面直径是2分米,高是45分米

  3. 底面半径是3.2厘米,高是5分米

  研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

  2、动画:圆柱体表面展开过程

  3、圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2

  4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

  三,巩固应用,内化提高

  1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒

  提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

  2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)

  重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

  3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

  四.回顾整理,反思提升

  根据板书总结:本节课你收获了什么?老师希望同学们能够应用本节课所学知识制作出一个笔筒,送给你的好朋友,下课。

圆柱体的面积教学设计一等奖第 4 篇

 教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

  情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、 自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),

  侧面积=长方形的面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积 = 圆柱的侧面积+底面积×2

  =Ch+2π r2

  =πdh+2π r2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3.巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

相关文章

《出塞教案一等奖教学设计》

《信息化大赛教学设计大赛一等奖》

《多文本阅读教学设计一等奖》

相关教案