幼儿园学习网

展开

首页>教学设计一等奖

平行四边形的判定教学设计一等奖

栏目:教学设计一等奖

这是平行四边形的判定教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

平行四边形的判定教学设计一等奖

平行四边形的判定教学设计一等奖第 1 篇

 上完这节课,从学生上课情况、作业等多方面发现,本节课所取得的教学效果是值得肯定的,但也有需要改进的地方.为此,本人针对本节课的教学,从内容设计、新课标理念、教法等几个方面作了如下的反思:

  1、流畅的教学设计、精心的内容编排、巧妙的时间运用是上好一节新课标理念下的新授课的大前提.

  要开展多元化的探究活动,要学生在合作探索中体现和发现新知识,就必须在有限的45分钟时间里尽可能挤出时间和空间,让学生有更多的动手、动口、思考和尝试的机会.因此,整个新授课的教学设计必须很流畅,教学内容与练习的选取必须衔接连贯,不允许有任何时间上的点滴浪费.在教学过程中,本人通过创设情景、引入课题,出示学习目标重难点、自学指导,引导学生探究新知等教学环节.既培养学生的合作意识,又重视学生数学思想方法的学习,合理调整教学内容,使学生的学习目标更加明确,让学生在动中学.培养学生展示的意识。

  2、能否以探究活动的形式,让学生通过自主探索、合作交流去发现和体验新知识是上好一节新课标理念下的新授课的关键.

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动.教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动中去.这一节课学生已通过旋转操作的探究方式发现平行四边形是一个中心对称图形,进而探索得出“平行四边形的对边相等,对角相等,邻角互补”等特征,再借助动画演示使同学们对平行四边形有关边和角方面的性质有较深的理解.与此同时,学生也对旋转操作的步骤和要领有了一定的认识,以此为基础,既能体现新课标教学理念,又能提高学生的学习兴趣和实际操作能力,取得较好的学习效果.

  学生的合作探究要取得成效,离不开教师的正确引导和促进.在探究活动中,教师应扮演一个参与者与促进者相结合的角色,加入学生中去,与学生们一起共同去探求和发现新知识,但这个参与者并不能只为参与而参与,他必须在参与者们产生误解或迷惑的时候提供正确的指引,促进参与者们朝着同一的、正确的方向迈进.而在练习过程中,教师此时就要摇身一变,成为一个新课标理念下知识传授者的角色,检查每一位学生的练习质量,对不足者及时辅导,较大问题及时在课堂上反馈,好让全班同学加以注意,提高警惕.

  学生获得新知识后,接下来处理讲学稿例题精讲,开心练习,安排顺序:例1,做一做,试一试,练一练,巩固与提高,拓展与延伸.

  以上就是我对这节课后的一点反思,以及对新课标理念下的新授课教学的一点个人看法.然而,怎样才能进一步完善和改进新课标理念下的新授课教学,这有赖于我们全体数学教学工作者通过不懈的努力,携手作出更深入的研究和探讨,互相交流,共同进步.

平行四边形的判定教学设计一等奖第 2 篇

 [教学目标] 通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。

  [教学过程]

  一、准备题系列

  1.复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)

  2.小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?

  (让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查。对个别差生稍加点拨,最后请学生回答画图方法) 学生可能想到的画法有:⑴ 分别过A、C作DC、DA的平行线,两平行线相交于B; ⑵过C作DA的平行线,再在这平行线上截取CB=DA,连结BA;⑶ 分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。

  还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出 连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。

  二、引入新课

  上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得 研究的问题“平行四边形的判定”(板书课题)。

  三、尝试议练

  1.要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。

  2.现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。

  自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)

  3.再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)

  完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)

  四、变式练习

  1.再看看第四种画法,可知,已各条件是四边形的`对角线互相一平分,这种情况下它是不平行四边形?

  阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?(应该用判定定理一)

  2.变式题

  ⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)

  ⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(教师补充)

  ⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)

  ⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?

  观察下图:

  平行四边形ABCD中,

  五、课堂小结

  1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

  2.这些平行四边形的判定方法中最基本的是哪一条?

  3.平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?

平行四边形的判定教学设计一等奖第 3 篇

一、教学目标

平行四边形的判定教学设计

  经历探索平行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是平行四边形这一判别条件。

  二、教材分析

  本节课是在学生学习了平行四边形的两个判定定理之后即将学习的`第三个判定定理——两组对边分别相等的四边形是平行四边形。

  三、教学重难点

  重点:

  探索并掌握平行四边形的判别条件。

  难点:

  对平行四边形判别条件的理解及说理的基本方法的掌握。

  四、教学准备

  两根长40厘米 和两根长30厘米的木条

  五、教学设计

  首先复习平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做” ,“议一议” 以及“随堂练习”加深对平行四边形判定定理的理解。

  六、教学过程

  1、复习平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)

  2、小组活动

  用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。 (通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。 平行四边形的判定定理——两组对边相等的四边形是平行四边形。

  3、课本91页的“做一做” (其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)

  4、“议一议”

  问题1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。 (先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)

  问题2、要判别一个四边形是平行四边形,你有哪些方法?

  5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固

平行四边形的判定教学设计一等奖第 4 篇

一、教学目标:

1.在探索平行四边形的判别条件中,理解并掌握用边、角、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题.

3.培养用类比、逆向联想及运动的思维方法来研究问题.

二、重点、难点:

重点:平行四边形的判定方法及应用.

难点:平行四边形的判定定理与性质定理的灵活应用.

三、教学过程:

1、引入:平行四边形的定义,性质。从边、角、对角线进行总结。

2、提出问题1:将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变,在图形变化过程中,它一直是一个平行四边形吗?

学生进行观察,猜想并证明。

3、新授:

(1)由上面的证明得到平行四边形的判定定理1:两组对边分别相等的四边形是平行四边形

几何语言:∵AB=CD,AD=BC

∴四边形ABCD是平行四边形

例1.已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF。

求证:四边形BFDE是平行四边形

(2)提出问题2:四边形ABCD, ∠A=∠C,∠B=∠D

那么四边形ABCD是平行四边形吗?

学生进行证明得到平行四边形的判定定理2:

两组对角分别相等的四边形是平行四边形

几何语言:∵∠A=∠C,∠B=∠D

∴四边形ABCD是平行四边形

(3)提出问题3:四边形ABCD, 对角线AC、BD相交于点O,且OA=OC,OB=OD那么,四边形ABCD是平行四边形吗?

学生进行证明得到平行四边形的判定定理3:

对角线互相平分的四边形是平行四边形

例2.已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF。求证:四边形BFDE是平行四边形

4、课堂练习:

5、课堂小结:

6、学生作业布置

相关文章

《社戏教学设计一等奖课后反思》

《半截蜡烛一等奖教学设计》

《夸张的脸教学设计一等奖》

相关教案