幼儿园学习网

展开

首页>教学设计一等奖

平面向量基本定理说课稿一等奖

栏目:教学设计一等奖

这是平面向量基本定理说课稿一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

平面向量基本定理说课稿一等奖

平面向量基本定理说课稿一等奖第 1 篇

 目的:

  要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。

  过程:

  一、开场白:本P93(略)

  实例:老鼠由A向西北逃窜,猫在B处向东追去,

  问:猫能否追到老鼠?(画图)

  结论:猫的速度再快也没用,因为方向错了。

  二、提出题:平面向量

  1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等

  注意:1数量与向量的区别:

  数量只有大小,是一个代数量,可以进行代数运算、比较大小;

  向量有方向,大小,双重性,不能比较大小。

  2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。

  2.向量的表示方法:

  1几何表示法:点—射线

  有向线段——具有一定方向的线段

  有向线段的三要素:起点、方向、长度

  记作(注意起讫)

  2字母表示法: 可表示为 (印刷时用黑体字)

  P95 例 用1cm表示5n mail(海里)

  3.模的概念:向量 的大小——长度称为向量的模。

  记作: 模是可以比较大小的

  4.两个特殊的向量:

  1零向量——长度(模)为0的向量,记作 。 的方向是任意的。

  注意 与0的区别

  2单位向量——长度(模)为1个单位长度的向量叫做单位向量。

  例:温度有零上零下之分,“温度”是否向量?

  答:不是。因为零上零下也只是大小之分。

  例: 与 是否同一向量?

  答:不是同一向量。

  例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?

  答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。

  三、向量间的关系:

  1.平行向量:方向相同或相反的非零向量叫做平行向量。

  记作: ∥ ∥

  规定: 与任一向量平行

  2.相等向量:长度相等且方向相同的向量叫做相等向量。

  记作: =

  规定: =

  任两相等的非零向量都可用一有向线段表示,与起点无关。

  3.共线向量:任一组平行向量都可移到同一条直线上 ,

  所以平行向量也叫共线向量。

  例:(P95)略

  变式一:与向量长度相等的向量有多少个?(11个)

  变式二:是否存在与向量长度相等、方向相反的向量?(存在)

  变式三:与向量共线的向量有哪些?( )

  四、小结:

  五、作业:

  P96 练习 习题5.1

平面向量基本定理说课稿一等奖第 2 篇

 “空间向量与立体几何”一章是数学必修4“平面向量”在空间的推广,又是数学必修2“立体几何初步”的延续,本节是概念教学,概念的展开采用了从平面向量过渡到空间向量的过程,突出了类比思想。进而在了解空间向量概念的基础上,运用空间向量表示直线的方向和平面位置关系的问题,体会向量在研究几何图形中的作用。下面有几点体会:

  1. 课本开始举的李明从学校到住处的位移,求这个位移用到了三次不在同一个平面内的位移从而进入课题,可引导学生举出更多的实例,墙壁支架上物体所受的力等。让学生体会到生活中很多问题用到空间向量,体会数学来源于实际,提高学生学习兴趣及善于观察的能力。

  2. 讲授基本概念时,注重类比归纳的方法,从平面向量入手,类比得到空间向量的基本概念,无论是从向量的定义、向量的表示、向量的长度,还是特殊向量(单位向量、相等向量等)、向量与直线等都从平面向量类比到空间向量。这里通过微课的播放让学生进行回顾,过于单调,而微课的呈现也起到了一定的作用。

  3.自主学习的时候学生的积极性不是特别高,因为提前给小组布置了相应的任务,有个别小组没有过多关注其他问题,下次不提前告知任务。

  4.课堂探究时学生的表现很好,但是对于学生的回答,总结点评不是特别到位。

  5.空间向量的基本概念及其性质是后续学习的前提,由于空间向量是平面向量的推广,空间向量及其运算所涉及的内容与平面向量及其运算类似,所以,空间向量的教学上要注重知识间的联系,温故而知新,运用类比、

  猜想、归纳、推广的方法认识新问题,经历向量及其运算由平面向空间推广的过程。

平面向量基本定理说课稿一等奖第 3 篇

【学习目标】

  1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。

  2.能应用平面向量基本定理解决一些几何问题。

  【知识梳理】

  若 , 是不共线向量, 是平面内任一向量

  在平面内取一点O,作 = , = , = ,使 =λ1 =λ2

  = = + =λ1 +λ2

  得平面向量基本定理:

  注意:1? 、 必须不共线,且它是这一平面内所有向量的一组基底

  2? 这个定理也叫共面向量定理

  3?λ1,λ2是被 , , 唯一确定的实数。

  【例题选讲】

  1.如图,ABCD是平行四边形,对角线AC,BD交于M, , ,试用基底 、 表示 。

  2.设 、 是平面内一组基底,如果 =3 -2 , =4 + , =8 -9 ,求证:A,B,D三点共线。

  3.设 、 是平面内一组基底,如果 =2 +k , =- -3 , =2 - ,若A,B,D三点共线,求实数k的值。

  4. 中, ,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图, , ,试用 、 表示 。

  【归纳反思】

  1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。

  2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量 ,平面内的任何一个向量都可以用 唯一表示,这样几何问题就可以转化为代数问题,转化为只含 的代数运算。

  【课内练习】

  1.下面三种说法,正确的是

  (1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;

  (2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;

  (3)零向量不可为基底中的向量;

  2.如果 、 是平面 内一组基底,,那么下列命题中正确的是

  (1)若实数m,n,使m +n = ,则m=n=0;

  (2)空间任一向量 可以表示为 = m +n ,这里m,n是实数;

  (3)对实数m,n,向量m +n 不一定在平面 ;

  (4)对平面 内的任一向量 ,使 = m +n 的实数m,n有无数组。

  3.若G是 的重心,D、E、F分别是AB、BC、CA的中点,则 =

  4.如图,在 中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设 ,试用 , 表示 。

  5.设 , , ,求证:A、B、D三点共线。

  【巩固提高】

  1.设 是平面内所有向量的一组基底,则下面四组中不能作为基底的是

  A + 和 - B 3 -2 和-6 +4

  C +2 和 +2 D 和 +

  2.若 , , ,则 =

  A + B + C + D +

  3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足 ,其中 ,且 =1,则点C的轨迹方程为

  4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足

  ,则P的轨迹一定通过 的' 心

  5.若点D在 的边BC上,且 = ,则3m+n的值为

  6.设 = +5 , = -2 +8 , =3( - ),求证:A、B、D三点共线。

  7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN= BD,求证:M,N,C三点共线。

  8.已知 =5 +2 , =6 +y , , , 是一组基底,求y的值。

  9.如图,在 中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设 , ,试用 , 为基底表示向量 。

平面向量基本定理说课稿一等奖第 4 篇

一.复习目标:

  1.了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、减法、数乘的运算,掌握向量坐标形式的平行的条;

  2.学会使用分类讨论、函数与方程思想解决有关问题。

  二.主要知识:

  1.平面向量坐标的概念;

  2.用向量的坐标表示向量加法、减法、数乘运算和平行等等;

  3.会利用向量坐标的定义求向量的坐标或点的坐标及动点的轨迹问题.

  三.前预习:

  1.若向量 ,则 ( )

  2.设 四点坐标依次是 ,则四边形 为 ( )

  正方形 矩形 菱形 平行四边形

  3.下列各组向量,共线的是 ( )

  4.已知点 ,且有 ,则 。

  5.已知点 和向量 = ,若 =3 ,则点B的坐标为 。

  6.设 ,且有 ,则锐角 。

  四.例题分析:

  例1.已知向量 , ,且 ,求实数 的值。

  小结:

  例2.已知 ,

  (1)求 ;(2)当 为何实数时, 与 平行, 平行时它们是同向还是反向?

  小结:

  例3.已知点 ,试用向量方法求直线 和 ( 为坐标原点)交点 的坐标。

  小结:

  例4.已知点 及 ,试问:

  (1)当 为何值时, 在 轴上? 在 轴上? 在第三象限?

  (2)四边形 是否能成为平行四边形?若能,则求出 的值.若不能,说明理由。

  小结:

  五.后作业:

  1. 且 ,则锐角 为 ( )

  2.已知平面上直线 的方向向量 ,点 和 在 上的射影分别是 和 ,则 ,其中 ( )

  3.已知向量 且 ,则 = ( )

  4.在三角形 中,已知 ,点 在中线 上,且 ,则点 的坐标是 ( )

  5.平面内有三点 ,且 ∥ ,则 的值是 ( )

  6.三点 共线的充要条是 ( )

  7.如果 , 是平面 内所有向量的一组基底,那么下列命题中正确的是 ( )

  若实数 使 ,则

  空间任一向量 可以表示为 ,这里 是实数

  对实数 ,向量 不一定在平面 内

  对平面内任一向量 ,使 的实数 有无数对

  8.已知向量 , 与 方向相反,且 ,那么向量 的坐标是_ ____.

  9.已知 ,则与 平行的单位向量的坐标为 。

  10.已知 ,求 ,并以 为基底表示 。

  11.向量 ,当 为何值时, 三点共线?

  12.已知平行四边形 中,点 的坐标分别是 ,点 在椭圆 上移动,求 点的轨迹方程.

相关文章

《标点符号教学设计一等奖》

《信息化大赛教学设计大赛一等奖》

《学写游记教学设计一等奖五年级》

相关教案