一元一次不等式组教案一等奖
栏目:教学设计一等奖这是一元一次不等式组教案一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。
一元一次不等式组教案一等奖第 1 篇
教学目标
1、了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、探究不等式解与解集的不同意义的过程,渗透数形结合思想;
2学情分析
学生学习了一元一次方程、二元一次方程组和一次函数基础上才开始研究简单的不等式关系的.通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复的。大量的同类量之间最容易想到的就是它们有大小之分,而且学生通过前面的学习已初步经历了建立方程模型、建立函数关系解决一些实际问题的“数学化”过程,为分析量与量之间的关系积累了一定的经验,在此基础上,展开不等式的学习,已顺理成章.另外,不等式不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础.。
3重点难点
重点:是掌握解一元一次不等式的步骤.
难点:是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.
4教学过程 4.1第一学时 教学活动 活动1【导入】(一)引导观察
形成概念激趣
问题 : 观察下面的不等式,它们有哪些共同特征?
x-7>26
3x<2x+1
x>50
-4x>3
学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.
师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力.
活动2【导入】(二)通过类比 研究解法新知
练习:利用不等式的性质解不等式x-7>26
学生尝试独立完成练习
教师结合解题过程,指出:由x-7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.
设问1:解一元一次方程的依据和一般步骤是什么?
学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.
设问2:解一元一次不等式能否采用类似的步骤?
学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.
设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路.
9.2 一元一次不等式
课时设计 课堂实录
9.2 一元一次不等式
1第一学时 教学活动 活动1【导入】(一)引导观察
形成概念激趣
问题 : 观察下面的不等式,它们有哪些共同特征?
x-7>26
3x<2x+1
x>50
-4x>3
学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.
师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力.
活动2【导入】(二)通过类比 研究解法新知
练习:利用不等式的性质解不等式x-7>26
学生尝试独立完成练习
教师结合解题过程,指出:由x-7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.
设问1:解一元一次方程的依据和一般步骤是什么?
学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.
设问2:解一元一次不等式能否采用类似的步骤?
学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.
设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路.
一元一次不等式组教案一等奖第 2 篇
在教学过程中,利用生活中的实际问题,使学生感知到要解决的问题同时满足两个约束条件,而两个约束条件都是不等式,这样,引入不等式组就比较自然;在探究“不等式组的解集”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出求不等式组解集的方法。用数形结合的`方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。根据不等式组的四种情况,引导学生结合数轴归纳出“同大取大、同小取小、大小小大取中间、大大小小无处找”的口诀求解不等式组,运用口诀的同时,头脑中想象数轴,使数形有机结合。
通过对本节课系统的回顾,梳理,我发现部分学生在由实际问题抽象为数学模型的过程中,存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。学生的学习积极性有很大的提高,学习效果较好。原本枯燥的、抽象的纯数学的知识通过与实际联系,利用数形结合,变得有趣、易懂。
一元一次不等式组教案一等奖第 3 篇
教学目标
1、知识与技能:
(1)理解一元一次不等式组及其解集的意义;
(2)掌握一元一次不等式组的解法。
2、过程与方法:
(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。
(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。
3、情感、态度与价值观:
(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。
(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。
2学情分析
本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。
另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。
3重点难点
1、教学重点:对一元一次不等式组解集的认识及其解法。
2、教学难点:对一元一次不等式组解集的认识及确定。
3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。
4教学过程4.1第一学时教学活动活动1【导入】温故知新
教师提问:
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
针对性练习:
(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)
活动2【讲授】创设问题情景,探索新知
1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水
超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?
(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)
2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:
超过1 200 t和不足1 500 t。
3、问题1:如何用数学式子表示这两个不等关系?
1)引导学生一起把这个实际问题转换为数学模型:
满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。
设用x min将污水抽完,则x需同时满足以下两个不等式:
30x>1200, ①
30x<1500 ②
2)教师归纳一元一次不等式组的意义:
由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。
(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)
4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?
1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,
运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。
2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的.解集。学生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。
(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)
5、问题3:如何求得这两个解集的公共部分?
学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。
(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)
教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。
(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)
形式一:用两种不同颜色表示这两个解集
1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。
(1)这两种颜色把数轴分成几个部分?
(2)每一个部分分别表示哪些数?
(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?
2)学生通过自主探究、合作交流,得到这3个问题的正确答案。
3)得出结论:
只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。
4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。
(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。
类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。
形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。
(设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)
6、问题4:如何表示这个可取值范围?
教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为4040且x<50。
7、小结并解决课本问题:原不等式组中x的取值范围为40
(设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。)
8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳:
在数轴上,若在40
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。
9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)把这些解集分别在同一条数轴上表示出来;
(3)确定各个不等式解集的公共部分;
(4)写出不等式组的解集。
(设计意图:及时进行小结,使学生对所学知识更加的系统化。)
一元一次不等式组教案一等奖第 4 篇
教学目标
1、了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、探究不等式解与解集的不同意义的过程,渗透数形结合思想;
2学情分析
学生学习了一元一次方程、二元一次方程组和一次函数基础上才开始研究简单的不等式关系的.通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复的。大量的同类量之间最容易想到的就是它们有大小之分,而且学生通过前面的学习已初步经历了建立方程模型、建立函数关系解决一些实际问题的“数学化”过程,为分析量与量之间的关系积累了一定的经验,在此基础上,展开不等式的学习,已顺理成章.另外,不等式不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础.。
3重点难点
重点:是掌握解一元一次不等式的步骤.
难点:是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.
4教学过程 4.1第一学时 教学活动 活动1【导入】(一)引导观察
形成概念激趣
问题 : 观察下面的不等式,它们有哪些共同特征?
x-7>26
3x<2x+1
x>50
-4x>3
学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.
师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力.
活动2【导入】(二)通过类比 研究解法新知
练习:利用不等式的性质解不等式x-7>26
学生尝试独立完成练习
教师结合解题过程,指出:由x-7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.
设问1:解一元一次方程的依据和一般步骤是什么?
学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.
设问2:解一元一次不等式能否采用类似的步骤?
学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.
设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路.
9.2 一元一次不等式
课时设计 课堂实录
9.2 一元一次不等式
1第一学时 教学活动 活动1【导入】(一)引导观察
形成概念激趣
问题 : 观察下面的不等式,它们有哪些共同特征?
x-7>26
3x<2x+1
x>50
-4x>3
学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.
师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力.
活动2【导入】(二)通过类比 研究解法新知
练习:利用不等式的性质解不等式x-7>26
学生尝试独立完成练习
教师结合解题过程,指出:由x-7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.
设问1:解一元一次方程的依据和一般步骤是什么?
学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.
设问2:解一元一次不等式能否采用类似的步骤?
学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.
设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路.