探索图形一等奖教学设计
栏目:教学设计一等奖这是探索图形一等奖教学设计,是优秀的教学设计一等奖文章,供老师家长们参考学习。
探索图形一等奖教学设计第 1 篇
教学目标:
1.进一步认识和理解正方体特征。
2.通过观察、列表、想象等活动经历“找规律”的全过程,获得“化繁为简”的解决问题的经验,培养学生的空间想象力。
3.让学生体会分类、数形结合、归纳、推理、模型等数学思想,积累数学思维的活动经验。
4.在相互交流中,学会倾听他人意见,及时自我修正、自我反思,增强学好数学的信心。
教学重点:
学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:
探索规律的归纳方法。
教学准备:
小正方体学具和课件。
教学过程:
一、复习导入:
今天老师要带你们去见立体图形大家庭里的一位重要成员,也是我们的好朋友,请看,它是谁呢?
(一)课件出示棱长10cm的正方体:
师:你对正方体有哪些认识呢?
指名回答,然后课件出示:正方体有( )个顶点;( )个面;( )条棱。
(二)如果在这个大正方体的表面涂上颜色,你对“表面涂色”怎么理解?
(三)然后把它切成棱长1cm的小正方体,能切多少块?每个小正方体的涂色面数相同吗?根据小正方体涂色面数的不同来分类,可以把这些小正方体分为几类呢?
预设:三面涂色的、两面涂色的、一面涂色的、没有面涂色的共四类。
(四)师:如果现在让你说出每一类的小正方体各有多少块,你感觉容易吗?
预设生:小正方体的块数太多啦,不容易。
(五)师:对,这个图形确实太复杂了,每一类小正方体的块数也比较多,不容易得到答案,那我们怎么办呢?
预设:先来研究简单的图形,总结出简单图形中蕴含的规律,再利用规律去解决这个复杂问题。
(六)师:我们先来研究简单的图形,从简单图形里找到规律,然后再解决这个复杂问题。今天我们就来探索图形,探索就是探究的意思。
板书课题:探索图形
二、探究新知:
(一)合作探究:
1.师:那我们先来研究这三个图形,这三个图形简单吗?第一个图形棱的位置上有2块小正方体,一共有几块小正方体?第二个图形棱的位置上有3块小正方体,一共有几块呢?第三个图形棱的位置上有4块小正方体,一共有几块?我们先从这三个简单图形中找出规律,然后应用规律再解决刚才的问题好吗?
2.请观察老师拿的这个立体图形,它的棱的位置上有几块小正方体?和几号图形是一样的?(和图形一样)
3.我在这个立体图形的表面涂上了颜色,涂红色的小正方体有几个面涂上了颜色?共有几块?涂黄色的小正方体有几个面涂色?共有几块?涂蓝色的小正方体有几个面涂色?共有几块?(引导学生回答后,板书在黑板表格里)
4.三面涂色的8块,两面涂色的12块,一面涂色的6块,一共26块,刚才大家回答说图形里共有27块小正方体,怎么少了一块?哪儿算错啦?在哪儿呢?怎么看不见呢?
5.我们变个魔术,看能不能把那一块变出来好吗?(操作教具,直观演示)
6.分小组活动:动手实践、合作探究:
你们能自己探究出其它两个图形中每类小正方体的块数分别是多少吗?下面我们分组探究。
出示活动要求:
(1)用小正方体学具分别摆出相应的大正方体。
(2)如果在每个大正方体的表面涂上颜色,观察每类小正方体各有多少块?
(3)把每类小正方体的块数填在第一题的表格里。
(4)观察每类小正方体都在什么位置?完成体验单上的第二题。
7.分组汇报:
图形序号
每条棱上小正方体的块数
(块)
总块数
(块)
三面涂色的块数
(块)
两面涂色的块数
(块)
一面涂色的块数
(块)
没有面涂色的块数
(块)
2
8
8
0
0
0
3
27
8
12
6
1
4
64
8
24
24
8
8.初步总结规律:
(1)每类小正方体都在大正方体的什么位置呢?
预设生1:每幅图三面涂色的小正方体都有8块,都在大正方体顶点的位置。每幅图两面涂色的小正方都在每条棱的中间位置。
预设生2:每幅图一面涂色的小正方体都在每个面的中间位置。每幅图不涂色的小正方体都在大正方体里面除去表面一层的位置。
(2)师:每幅图中两面涂色、一面涂色和不涂色的小正方体块数你们是用什么方法得到的?
预设生1:看图数出来的。
预设生2:我们组是算出来的,比如第三幅图中两面涂色的小正方体块数=(4-2)×12。
预设生3:比如第三幅图中一面涂色的小正方体块数=(4-2)×(4-2)×6
预设生4:第三幅图中没有涂色的小正方体块数=(4-2)×(4-2)×(4-2)
探索图形一等奖教学设计第 2 篇
教学目标:
1.借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2.在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法和经验。
3.在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:
学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:
探索规律的归纳方法。
教学准备:
小正方体学具和。
教学过程:
一、复习导入
1、正方体有什么特征?
2、提问:棱长为10厘米的大正方体是由多少个棱长1厘米的小正方体拼成的?
3、导入:如果给这个正方体的表面涂上颜色,每个小正方体涂色的部分会一样多吗?
学生观察分类:三面涂色的块数、两面涂色的块数、一面涂色的块数、没有涂色的块数
师:你们能数出每一类小正方体到底有多少块吗?
师:这个图形太复杂了,我们很难数出。这样吧,我们先来研究简单的图形,探索图形中蕴含的规律,再利用规律去解决复杂的图形,好吗?(板书课题:探索图形)
二、探索新知
1、发现规律。
用棱长1c的小正方体拼成棱长为2c的大正方体(即①号),问一共有多少块小正方体?然后讨论:如果把它的表面涂上颜色,每个小正方体会有几个面涂色?
观察②、③号大正方体,想一想:每个小正方体会涂色几个面?看一看:每类小正方体都在什么位置。
(3)汇报交流
各小组汇报时,配合演示,集体订正。
A、三面涂色:当学生说出有8个三面涂色的小正方体时,追问:哪8个?学生说出三面涂色的小正方体在原来大正方体8个顶点的位置。
B、两面涂色:可能有的学生是数出来的,也可能有的学生是用2×12算出来的。 先让用计算方法的学生说一说“为什么用2×12”从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会可以从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。 引导比较“数”和“算”哪种更简便。
C、一面涂色:着重交流明确可以由一面有4个一面涂色的小正方体,推算出6个面一共有4×6=24个一面涂色的小正方体。 还要追问:4从哪来的?
D、利用经验自主探究没有涂色的小正方体与原来大正方体的关系。
a引导学生自主提出新问题:没有涂色的小正方体有多少个?
b学生讨论方法。估计大部分学生是用小正方体的总个数减去三面、两面、一面涂色的小正方体的总个数。 ?
c实物演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法。
2、验证猜想。
(1)如果拼成棱长为5c、6c的大正方体后,你能猜想一下三面、两面、一面、没有涂色的小正方体各有多少个?
(2)演示,验证学生的猜想。
3、演示,总结规律。
三面涂色的小正方体都在大正方体的顶点的位置。不论棱长是几,分割后三面涂色的小正方体的个数都是8个。
两面涂色的小正方体都在大正方体的棱的位置。只要用每条棱中间两面涂 2色的小正方体的个数乘12,就得出两面涂色的小正方体的总个数,即 (n-2)x12。
一面涂色的小正方体都在大正方体的面的位置。(每一面上除去外圈的位置)只要用每个面上一面涂色的小正方体的个数乘6,就得出一面涂色的小正方体的总个数,即 (n-2)x(n-2)x6。
没有涂色的小正方体在正方体里面除去表面一层的位置。所以有用小正方体的总个数减去三面、两面、一面涂色的小正方体的总个数。 或演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法是(n-2)x(n-2)x(n-2)。
三、巩固拓展
现在能解决我们开始遇到的问题了吗?
三面涂色:8块;
两面涂色:(10-2)x12=96(块);
一面涂色:(10-2)x(10-2)x6=384(块);
没有涂色:(10-2)x(10-2)x(10-2)=512(块)。
四、课堂小结
教师小结:当我们遇到比较复杂的问题,解决起来有困难时,可以尝试先从简单的情况开始,看能否发现规律,再应用规律去解决复杂的问题,这是一种解决问题常用的思想方法。(化繁为简)
探索图形一等奖教学设计第 3 篇
【教学目标】
1.借助正方体涂色问题,通过实际操作、演示、想象、联想等形式发现小正方体涂色和位置的规律。
2.在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法和经验。
3.在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神,和实事求是的科学态度。
【教学重难点】
重难点:找出小正方体涂色以及它所在的位置的规律。
【教学过程】
复习导入
1.正方体的面、棱、顶点各有什么特征?
2.正方体的表面积和体积都需要许多计算才能得到,但是今天我们不去探讨这个,我们今天来进行一个不需要怎么计算,但是需要发挥你们想象力的小探究,好不好?
二、新课讲授
1.用棱长1cm的小正方体拼成棱长为2cm的大正方体后,把它们的表面分别涂上颜色,需要多少个小正方体?你觉得这些小正方体有什么特点?
2.看来同学们都比较聪明,这个问题难不住大家,那么如果将这个大正方体拼得再大一点呢?课件演示:用棱长1cm的小正方体拼成棱长为3cm的大正方体后,把它们的表面分别涂上颜色。
(1)需要多少个小正方体?(课件演示需要9个小正方体)
(2)这个时候这些小正方体,都有什么特点呢?
(3)提出问题:其中三面、两面、一面涂色的小正方体各有多少个?
请大家小组讨论交流。教师板书。
3.如果拼成棱长为4cm、5cm、6cm的大正方体后,需要多少个小正方体?其中三面、两面、一面涂色的小正方体各有多少个?
(1)学生借助直观图独立思考,解决拼成棱长为4cm的大正方体的问题。
(2)分类汇报交流。
①三面涂色:当学生说出有8个三面涂色的小正方体时,追问:哪8个?学生说出三面涂色的小正方体在原来大正方体的8个顶点的位置。
②两面涂色:可能有的学生是数出来的,也可能有的学生是用2XXXXX12算出来的。
先让用计算方法的学生说一说“为什么用2XXXXX12”,从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会可以从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。
引导比较“数”和“算”哪种更简便。
③一面涂色:着重交流明确可以由一面有4个一面涂色的小正方体,推算出6个面一共有4XXXXX6=24(个)一面涂色的小正方体。
还要追问4从哪来的——棱长4,减去两个2个,得到一个边某某2的正方形。
(3)学生独立解决棱长平均分成5份的问题。
教师课件演示
4.发现并总结规律。
三面涂色的小正方体都在大正方体的顶点的位置。不论棱长是几,分割后三面涂色的小正方体的个数都是8个。
两面涂色的小正方体都在大正方体的棱的位置,只要用每条棱中间两面涂 2色的小正方体的个数乘12,就得出两面涂色的小正方体的总个数。
一面涂色的小正方体都在大正方体的面的位置,只要用每个面上一面涂色的小正方体的个数乘6,就得出一面涂色的小正方体的总个数。
如果把棱长为n的大正方体涂色切割,三面涂色、两面涂色、一面涂色的小正方体各有多少个?
5.利用经验自主探究没有涂色的小正方体与原来大正方体的关系。
(1)引导学生自主提出新问题:除了知道三面、两面、一面涂色的小正方体的个数以外,你还想知道什么?(估计学生会提出:没有涂色的小正方体有多少个?)
(2)学生讨论方法。估计大部分学生是用小正方体的总个数减去三面、两面、一面涂色的小正方体的总个数。
(3)课件演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法。
(4)学生自主探究,并填写表格。
(5)展示汇报,从而总结出没有涂色的小正方体的个数是(n-2)个。
三、课堂作业
完成教材第44页第(2)题:数正方体的个数
2层:1+(1+2)=4或1XXXXX2+2XXXXX1=4
3层:1+(1+2)+(1+2+3)=10或1XXXXX3+2XXXXX2+3XXXXX1=10
4层:1+(1+2)+(1+2+3)+(1+2+3+4)=20或1XXXXX4+2XXXXX3+3XXXXX2+4XXXXX1=20
四、课堂小结
1.提问:通过今天的学习你有什么收获,还有什么疑问?
2.教师举例说明“分类计数探究规律”的数学思想和方法在生活中有着广泛的应用,让学生体会数学的应用价值。
探索图形一等奖教学设计第 4 篇
教学内容:
人教版小学数学五年级下册第三单元《长方体和正方体》综合与实践活动课,教材第44页:探索图形。
教材分析:
在认识长方体和正方体后,教材安排了“探索图形”的综合与实践活动。目的是让学生运用所学过的正方体的特征等知识,探索由小正方体拼成的大正方体中各种涂色小正方体的数量,发现其中蕴含的数量上的规律,以及每种涂色小正方体的位置特征,培养学生的空间想象力和推理能力、体会分类计数的思想。
原研究内容是这样呈现的:
(1)棱长1cm的小正方体拼成一个棱长2cm的大正方体,把它的表面涂成绿色。三面、两面、一面涂色以及没有涂色的小正方体各有多少块?
(2)棱长1cm的小正方体拼成个棱长3cm的大正方体,各种涂色情况的小正方体是多少块?棱长是4cm,5cm,6cm的呢?
让学生综合运用正方体的特征等相关知识,借助已有的学习经验,在观察、想象、推理、交流等活动中,把握问题的共性,从而发现三面涂色、两面涂色、一面涂色的小正方体的个数与大正方体顶点、棱、面之间的关系,使学生在探究规律的过程中,积累数学活动经验,发展空间观念。
正是由于各个小正方体在大正方体上的位置不同,所以它们涂颜色面的个数不同。研究小正方体涂色面的规律,要分类整理各种小正方体的原来位置,与刚刚教学的正方体知识有联系,对空间想象力提出了新的内容与要求,有益于学生空间观念的发展教材编排注重动手实践与自主探索,促进学生空间观念的发展。
学情分析:
学生在第一学段初步认识了立体图形,有一定的认识基础。同时也已经掌握了平面图形的知识,为学习立体图形作好了准备。本单元前面已经学习了长方体、正方体的特性以及两种立体图形的表面积、体积的计算。
由平面图形扩展到立体图形,是学生发展空间观念的一次飞跃,教学中应该注重学生的学习体验、动手操作、总结归纳,让学生在探索活动中掌握知识的内涵,转化为自身的能力。
教材以棱长为2、3、4的正方体入手研究规律,规律研究的最小数据棱长为2开始研究,从学生的实际反馈发现棱长为2的正方体对涂色图形的位置特征缺乏直观的感受,而棱长3、4的表格填写对规律的发现还有点薄弱。所以本课我在棱长为2教学时,切开让学生直观感受,里面的没有涂色。从棱长为3的正方体为切入点,通过观察魔方让学生初步感受不同涂色情况小正方体位置特征,再通过对棱长为4.5的正方体图形的涂色研究、数据填写,通过实验操作经历从具体到表象再到抽象的过程,丰满学生的规律发现探究之旅。
教学目标:
1.加深对正方体特征的认识和理解。
2.通过观察、列表、想象等方式探索、发现图形分类计数问题中的规律,体会化繁为简解决问题的策略,培养学生的空间想象力。
3.体会分类、数形结合、归纳、推理、模型等数学思想。
4.在相互交流中,学会倾听他人意见,及时自我修正,自我反思,增强学好数学的信心。
教学重、难点:
教学重点:学会从简单的情况找规律,解决复杂问题的'化繁为简的思想方法。
教学难点:探索规律的归纳方法。
教学准备::
多媒体课件,三阶魔方、活动任务单。
教学过程:
(一)复习导入,提出问题
复习正方体知识
1.魔方大多数是正方体,正方体有哪些特征?
2.这里有一个棱长为1厘米的小正方体,要用它拼成一个大正方体,最少需要多少个?
教师:这也就是拼成了棱为几的正方体。你们用到的小正方体的总块数是?
教师总结:我们用棱长为1厘米的小正方体,可以拼出棱长为2厘米的正方体,也可以拼出棱长为3厘米、4厘米、5厘米...的正方体。
引出问题
1.教师:这是棱长为几的正方体?它是由多少个小正方体组成的?
2.教师:如果现在给它的表面涂上颜色,会有什么问题发生,请大家在仔细看看,其中每一个小正方体涂色情况相同吗?对应的块数又是怎样的呢?
师总结:看来要想知道准确的答案并不是一件轻松的事情,我们不妨从一个简单的图形入手,一起来探索规律(板书课题,探索图形)。
[设计意图]:创设问题情境,在解决这个问题的过程中,让学生初步体会分类计数,深刻感受到原有的经验和方法解决问题有困难,产生认知冲突,促使学生积极主动地思考解决问题的方法,深刻体会化繁为简、探索规律解决问题的意义,积累解决问题的数学学习经验。同时,复习正方体的有关知识可以为后面的学习铺垫。
(二)活动研究,探索规律
1.探究棱长为2时,各种涂色小正方体的个数。
2.探究棱长为3时,各种涂色小正方体的个数。(利用正方体实物进行探究)
活动一:同桌两人合作,借助桌面上的三阶魔方进行观察,完成任务单活动(一)。
①在立体图形上找出三面涂色,两面涂色,一面涂色的小正方体的位置。
②数一数,算一算,每类小正方体各有多少个?
③汇报交流
教师:刚才你们观察到三面涂色的在的顶点处,两面涂色的在棱上,一面涂色的在面上。
猜想:是不是所有拼成后的三面、两面、一面涂色的正方体都在相应的位置上呢?
四人一组,小组合作研究,验证猜想。
[设计意图]:探究大正方体棱长为3时不同涂色小正方体的个数,学生利用学具能比较容易地找到答案。但本环节的意图并不在此,而是以探究不同涂色小正方体的个数为主体,旨在让学生在探究过程中具体感受不同涂色的小正方体在大正方体上的位置,为找不同涂色小正方体的个数与大正方体棱的等分数的关系扫清障碍。
活动二:四人小组继续探究,当棱长为4,棱长为5时,每类小正方体的涂色情况,并快速填写任务单(二),看一看你能否发现规律。
学生汇报数据。
探究对应的数据如何得来的,验证答案。
[设计意图]:这一环节在学生抛开学具的基础上探寻不同涂色小正方体的个数,表面上看仿佛是上一环节在量上的增加,其实也有质的变化。上一环节重在让学生感受不同小正方体所在的位置,至于答案是学生数出来的还是算出来的,不作要求;而这一环节,要引导学生在观察的基础上,用想象、推理加计算来找答案。由数出来到算出来,规律就在一步步的探究过程中悄悄萌芽。
(三)比较归纳,概括规律
教师:当小正方体的个数足够多时,我们再继续拼下去,这时棱长可以怎样表示呢?(用字母表示)
教师:回顾一下刚才的探究过程,你们觉得哪组数据最好找?
为什么三面涂色的小正方体最好找,你有什么发现?
再来回顾下两面涂色的小正方体,它们有什么相同的地方?
回顾一面涂色的小正方体,你又有什么发现?仔细观察一面涂色的小正方形,它们构成的图形有共同点?
没有涂色的小正方体有什么规律呢?生汇报。
师:没有涂色的怎样找更快,还有更好的方法吗,他们都位于大正方体的什么位置?那就是需要我们揭开它表面的一层,一起揭开它神秘的面纱,我们一起来观察一下。(ppt播放)
师:你有什么发现?没有涂色的小正方体的形状有共同点吗?那它的数据还可以表示成?当棱长为n时,没有涂色的小正方体的个数就为?
[设计意图]:回顾总结,是本节课的一大亮点,不能简单理解为学生认识到什么就总结什么,而应该在学生认识的基础上顺势而为,作适当的延伸和提高,不仅使学生有机会感悟研究规律背后的数学思想,为以后的数学研究做好铺垫,也实现相关研究方法和数学思想由“外显”变为“内化”。
回到棱长为9。
师:现在你们能解决棱长为9时,每类小正方体的块数吗?生汇报数据。
(四)课堂小结,总结提升。
1、回顾刚才探索和发现的过程,说说你的体会。
其实刚才的探究方法,就是数学上解决问题,常用的方法叫做“化繁为简”,在以前的学习中,我们也用到了这种学习方法,让我们一起回顾下吧。(ppt播放)
在今后的学习中,这位老朋友还会陪伴我们解决更多的问题。
老师把爱因斯坦的这句名言送给大家,希望在今后的学习中,这句话能激励着你们不断探究。
板书设计:
探索图形(化繁为简)
8个顶点12条棱6个面
棱长
三面涂色的块数
两面涂色的块数
一面涂色的块数
没有涂色的块数