幼儿园学习网

展开

首页>教学设计一等奖

分式方程概念教学设计一等奖

栏目:教学设计一等奖

这是分式方程概念教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

分式方程概念教学设计一等奖

分式方程概念教学设计一等奖第 1 篇

教学目标

  1。使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;

  2。通过列分式方程解应用题,渗透方程的思想方法。

  教学重点和难点

  重点:列分式方程解应用题。

  难点:根据题意,找出等量关系,正确列出方程。

  教学过程设计

  一、复习

  例 解方程:

  (1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1。

  解 (1)方程两边都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  (2)方程两边都乘以x(x+12),约去分母,得

  15(x+12)=30x。

  解这个整式方程,得

  x=12。

  检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

  (3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1。

  方程两边都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6。

  解这个整式方程,得 x=6。

  检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

  二、新课

  例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

  请同学根据题意,找出题目中的等量关系。

  答:骑车行进路程=队伍行进路程=15(千米);

  骑车的速度=步行速度的2倍;

  骑车所用的时间=步行的时间-0。5小时。

  请同学依据上述等量关系列出方程。

  答案:

  方法1 设这名学生骑车追上队伍需x小时,依题意列方程为

  15x=2×15 x+12。

  方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

  15x-15 2x=12。

  解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。

  方程两边都乘以2x,去分母,得

  30-15=x,

  所以 x=15。

  检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。

  所以骑车追上队伍所用的时间为15千米 30千米/时=12小时。

  答:骑车追上队伍所用的时间为30分钟。

  指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间。

  如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

  速度找等量关系列方程,所列出的方程都是分式方程。

  例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

  分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

  s=mt,或t=sm,或m=st。

  请同学根据题中的等量关系列出方程。

  答案:

  方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3。依题意,列方程为

  2(1x+1x3)+x2-xx+3=1。

  指出:工作效率的意义是单位时间完成的工作量。

  方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

  2x+xx+3=1。

  方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

  1-2x=2x+3+x-2x+3。

  用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。

  三、课堂练习

  1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数。

  2。A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的.比为2:5,求两辆汽车的速度。

  答案:

  1。甲每小时加工15个零件,乙每小时加工20个零件。

  2。大,小汽车的速度分别为18千米/时和45千米/时。

  四、小结

  1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。

  2。列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数。但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数。在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷。例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程

  135 x+5-12:135x=2:5。

  解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了。

  五、作业

  1。填空:

  (1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

  (2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

  (3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。

  2。列方程解应用题。

  (1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时。已知他第二次加工效率是第一次的2。5倍,求他第二次加工时每小时加工多少零件?

  (2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

  (3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

  (4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。

  答案:

  1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。

  2。(1)第二次加工时,每小时加工125个零件。

  (2)步行40千米所用的时间为40 4=10(时)。答步行40千米用了10小时。

  (3)江水的流速为4千米/时。

分式方程概念教学设计一等奖第 2 篇

 一,内容综述:

  1、解分式方程的基本思想

  在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程。即

  分式方程整式方程

  2、解分式方程的基本方法

  (1)去分母法

  去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。但要注意,可能会产生增根。所以,必须验根。

  产生增根的原因:

  当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。

  检验根的方法:

  将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。

  为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去。

  注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公

  分母为0。

  用去分母法解分式方程的一般步骤:

  (i)去分母,将分式方程转化为整式方程;

  (ii)解所得的整式方程;

  (iii)验根做答

  (2)换元法

  为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。

  用换元法解分式方程的一般步骤:

  (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;

  (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的.值;

  (iii)把辅助未知数的值代回原设中,求出原未知数的值;

  (iv)检验做答。

  注意:

  (1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。

  (2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。

  (3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。

分式方程概念教学设计一等奖第 3 篇

一、教学内容分析

《分式方程》是人教版八年级下册第16章第3节的内容,是在学习完一元一次方程和二元一次方程组之后,初中阶段所讲授的又一种方程的解法。分式方程的解法是初中阶段的一个重点内容,要求学生必须掌握。

二、学情分析

在学习本章之前,我们已经学习了整式方程(一元一次方程、二元一次方程组),学生对于整式方程特别是一元一次方程的解法已经比较熟悉,而分式方程的未知数在分母中,它的解法比一元一次方程和二元一次方程组复杂,需要通过转化思想,把分式方程转化成一元一次方程来解。

三、教学目标

知识与技能:理解分式方程的定义;掌握解分式方程的基本思路和方法;理解分式方程可能无解的原因,并掌握分式方程验根的方法。

过程与方法:经历“实际问题——分式方程——整式方程——求解——检验解的合理性”的探索过程,发展学生分析问题、解决问题的能力;渗透数学的转化思想,培养学生的应用意识。

情感、态度与价值观:培养学生乐于探究、合作学习的习惯;培养学生的进取心,体会数学的应用价值。

四、教学重点及难点

分式方程的解法及理解分式方程无解的原因。

五、教学流程

1.忆一忆

(1)什么叫方程?什么叫方程的解?

(2)解-这个一元一次方程的步骤。

(设计意图:以旧引新,便于学生接受)

2.猜一猜

板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点,学生易得出:分母中含有未知数的方程叫分式方程。

(设计意图:学生在回忆的基础上很容易猜出分式方程的概念,使学生感受到数学并不难,从而树立学好数学的信心。)

3.辨一辨

判断下列方程是不是分式方程,并说出为什么?

(1)=-5 (2)9x+4= (3) =2(4)=-1

(设计意图:学生可以很容易的判断出分式方程,进一步巩固分式方程的概念;对于这个方程在判断方程是否为分式方程时,不能化简,以形式为准)

4.想一想

想一想=的解是什么?怎样去解这个方程呢?

(设计意图:引导学生用已学过的知识解决现在的问题。通过去分母,方程两边同乘以各分母的最简公分母,让学生了解转化的思想)

5.试一试

(1)= (2) =

解:方程两边同乘以(x+5)(x-5)得:x+5=10 解得x=5,解:方程两边同是乘以x(x-3)得2x=3(x-3) 解得x=9

(设计意图:提醒学生检验,对比两个方程发现(1)的解代回到原方程,分母为零,引入增根定义)

6.议一议

分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出“分式方程能不检验吗”?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。

7.说一说

总结出解分式方程的一般步骤:

(1)方程两边都乘最简公分母,约去分母,化为整式方程。

(2)解这个整式方程。

(3)把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。

可简单记作:一化二解三检验。

(设计意图:让学生对所学知识上升到一个理论高度)

8.做一做

(1)= (2)=

六、课后反思

这节课,大部分同学都能掌握分式方程的概念及能化为一元一次方程的分式方程的解法,都能达到基本的目标。设计了增根这一部分的变式练习,学生都能接受,教学效果还不错。

分式方程概念教学设计一等奖第 4 篇

教学目标

一、教学目标

1.使学生理解分式方程的意义.

2.使学生掌握可化为一元一次方程的分式方程的一般解法.

3.了解解分式方程解的检验方法.

4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

2学情分析 3重点难点

1.教学重点:

(1)可化为一元一次方程的分式方程的解法.

(2)分式方程转化为整式方程的方法及其中的转化思想.

2.教学难点:检验分式方程解的原因

3.疑点及分析和解决办法:

解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.

4教学过程 4.1第一学时 教学活动 活动1【讲授】教学过程

(一)复习及引入新课

1.提问:什么叫方程?什么叫方程的解?

答:含有未知数的等式叫做方程.

使方程两边相等的未知数的值,叫做方程的解.

这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

(二)新课

板书课题:

板书:分式方程的定义.

分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.

练习:判断下列各式哪个是分式方程.

在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.

先由同学讨论如何解这个方程.

在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.

解:两边同乘以最简公分母2(x+5)得

2(x+1)=5+x

2x+2=5+x

x=3.

如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.

检验:把x=3代入原方程

左边=右边

∴x=3是原方程的解.

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

分析:设江水的流速为v千米/时,

则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为 小时,逆流航行60千米所用的时间为 小时。

可列方程 =

解方程得:v=5

检验:v=5为方程的解。

所以水流速度为5千米/时。

(四)总结

解分式方程的一般步骤:

1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.

2.解这个方程.

3.把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.

(五)练习

补充练习:

(六)作业

15.3 分式方程

课时设计 课堂实录

15.3 分式方程

1第一学时 教学活动 活动1【讲授】教学过程

(一)复习及引入新课

1.提问:什么叫方程?什么叫方程的解?

答:含有未知数的等式叫做方程.

使方程两边相等的未知数的值,叫做方程的解.

这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

(二)新课

板书课题:

板书:分式方程的定义.

分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.

练习:判断下列各式哪个是分式方程.

在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.

先由同学讨论如何解这个方程.

在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.

解:两边同乘以最简公分母2(x+5)得

2(x+1)=5+x

2x+2=5+x

x=3.

如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.

检验:把x=3代入原方程

左边=右边

∴x=3是原方程的解.

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

分析:设江水的流速为v千米/时,

则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为 小时,逆流航行60千米所用的时间为 小时。

可列方程 =

解方程得:v=5

检验:v=5为方程的解。

所以水流速度为5千米/时。

(四)总结

解分式方程的一般步骤:

1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.

2.解这个方程.

3.把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.

(五)练习

补充练习:

(六)作业

相关文章

《古诗三首教学设计一等奖》

《四上快乐读书吧教学设计一等奖》

《尺有所短寸有所长教学设计一等奖》

相关教案