单位进率
栏目:数学教案这是单位进率,是优秀的数学教案文章,供老师家长们参考学习。
单位进率第1篇
课题四:
教学要求 使学生在理解的基础上掌握常用的体积单位之间的进率和名数的改写。
体积单位之间的进率
教学重点 体积单位之间的进率。
教学用具 投影仪和棱长是1分米的正方体模型,如教材第37页的图。
教学过程
一、创设情境
填空:①长方体体积= ;②常用的体积单位有 、 、 ;③正方体体积= 。
师:你知道每相邻的两个体积单位之间的.进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)
二、探索研究
1.小组学习——体积单位间的进率。
(1)出示:1个棱长是1分米的正方体模型教具。
提问:①当正方体的棱长是1分米时,它的体积是多少?②当正方体的棱长是10厘米时,它的体积是多少?③而1分米是多少厘米?1立方分米等于多少立方厘米?
小组合作填表:
正方体 棱长 1分米 = 10厘米
体积 1立方分米 = 1000立方厘米
小组汇报结论:1立方分米=1000立方厘米
同理得出:1立方米=1000立方分米
用填空的形式小结:
从上面可以看出,相邻两个体积单位之间的进率都是 。
(2).将长度单位、面积单位、体积单位加以比较(投影显示第38页的表)
先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?
(3)学习体积单位名数的改写。
先思考:
(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?
(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?
出示例3,并写成如下形式:
8立方米=( )立方分米 0.54立方米=( )立方分米
出示例4,并写成如下形式:
3400立方厘米=( )立方分米 96立方厘米=( )立方分米
学生独立思考,再小组讨论自己是怎样想和做的。
出示例5。(投影显示)
放手让学生独立审题并解答,再针对出现的问题重点讲解。
解法一:
2.2×1.5×0.01=0.033(立方米)
0.033立方米=33立方分米
解法二:
2.2米=22分米 1.5米=15分米 0.01米=0.1分米
22×15×0.1=33(立方分米)
三、课堂实践
将练习八的第1、2题填在书上,老师进行个别辅导后订正。
四、课堂小结。学生小结今天学习的内容。
五、课后作业
练习八的3、4、5题。
体积单位之间的进率
单位进率第2篇
《面积单位间的进率》这部分内容是在学生初步认识了面积和学会长方形、正方形面积计算的基础上教学的,结合本课的重、难点以及学生的知识水平,本课设计主要采用猜想、设计实验验证、迁移类推、时间应用等主要形式进行教学的。
1、 激趣导入,让学生体会合作的妙处。
在上课的开始,就让学生以游戏的形式读儿歌,在这个过程中让学生体会合作的妙处,从而提示学生利用合作的形式探究本节课的知识内容。同时让学生轻松愉快的进入课堂学习氛围。
2.复习与思考。
复习题的设计是为了让学生在寻找解决问题的过程中产生新旧知识的矛盾点,为学生猜想面积单位间的进率,做了必要的铺垫,起到铺路搭桥的作用。同时设计成生活中的'问题,贴近生活,实践了课标中的理念:数学知识来源于生活,同时又在生活中实践应用。这样就可以水到渠成的进行数学知识的探究
2. 自主探索,研究新知。
在这个环节,除了学生自己的边长1分米的正方形资料外,我还让他们用不同的单位计量同一个图形的面积。如:对小一些的用分米和厘米为单位分别测量,如课桌、写字台等;对大一些的用米和分米测量,如教室、住室等,测量后再分别计算出面积。
单位进率第3篇
通过学生练习我发现,学生对面积单位的换算与长度单位的.换算发生混淆,对百进制和万进制的区分还很模糊。通过再次讲解发现,学生对进制关系的理解不是难点,容易出错的是,那么多单位间的换算很容易使他们判断不清了。尤其是出现像700平方分米等于多少平方厘米的问题,数比较大了,学生往往无从下手。
其实单位间的关系实质很简单,扩大一百倍或是缩小一百倍,添两个零或是减两个零。我跟学生一起总结从大单位到小单位,百进制是扩大一百倍,添两个零,从小单位到大单位是缩小一百倍,去掉两个零。此时学生就可以总结出万进制单位间怎么转换,添或减四个零。总结完毕,我让学生通过伸手指表示百进制、千进制、十进制添减几个零,调动学生思考的积极性。
学生在理解、巩固单位间的转换后,出一部分练习让他们巩固一下,可以比较好的巩固面积单位的转换这一知识点。