幼儿园学习网

展开

首页>数学教案

鸡兔同笼教案设计人教版

栏目:数学教案

这是鸡兔同笼教案设计人教版,是优秀的数学教案文章,供老师家长们参考学习。

鸡兔同笼教案设计人教版

鸡兔同笼教案设计人教版第1篇

  一、说教材

数学《鸡兔同笼》说课稿

  【地位和作用】

  思考——人教版实验教材增设数学广角这一单元的目的是什么?鸡兔同笼问题设置在数学广角中,其教学与常规课有什么不同?

  分析——《教学用书》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,“鸡兔同笼”问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。本课的教学与常规课相比,区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,为学生的终身发展奠定基础。本课时中,学生可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

  【编排的内容】“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。但其原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。

  解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

  配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

  二、说学情

  【认知分析】学生初步已接触多种解题策略,会一些基本的解决数学问题的方法。

  【能力分析】虽说学生已经初步尝试了应用逐一列表法解决问题,还有一些学生在课外书中或者数学班已经学习了相关的内容,但学生的程度会参差不齐,但在数学方法的应用意识与数学思维的自我提升等方面尚需进一步培养。

  【情感分析】多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

  三、说目标

  【教学目标】

  1. 经历和体验用不同的角度与方法解决实际问题的过程,进一步体会奥数的乐趣。

  2. 培养学生动脑筋,解决实际问题的意识,增强学生的数学应用能力。

  3. 了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

  【教学重点】用假设法来解决鸡兔同笼问题。

  【教学难点】 如何让绝大部分孩子掌握用假设法来解决这一相关问题。

  四、说教法

  综合以上的分析,从面向全体学生,发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发现法:即课堂上,教师或学生提出适当的数学问题,再由学生尝试着去发现规律,通过相互讨论,相互学习,在问题解决过程中提升数学方法,从而丰富学生的数学思想,逐步建立完善的认知结构。

  五、说学法

  两点想法:

  低起点:让每一个学生都积极参与。课伊始,我让学生钱的数额和张数。数据比较小,学生又有一定的情趣,容易激起学生学习的兴趣,使他们积极地参与课堂学习。教学例题时,因为有了以上的铺垫,就让学生尝试解决,学生在解决时,方法多种多样,列表凑数的.、画图的、假设法、列方程解决。

  巧突破:重点就放在假设法的教学上,先通过表格初步感知规律,再借助图形结合来攻破学生学习中思维中的障碍。

  基于以上分析,在学法上,引导学生采用适度指导与自主探索相结合、独立思考与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

  六、说理念

  遵照新课标精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流,通过老师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,进而体会到假设的数学思想的应用与解决数学问题的关系。

  七、说过程

  一、游戏导入,初步感知

  1.游戏导入

  师:(出示一个信封)知道信封里放的是什么吗?

  师:这里放着5张钱,猜一猜是多少?

  师:都是5元和10元的,可能会是多少钱?

  2.尝试列表

  师根据学生的回答填充表格。

  根据教师的提示,学生准确说出:

  信封里有35元钱,你知道5元的几张,10元的几张?

  3.及时小结

  教师出示信封里的钱,你为什么能很快的说出钱数?(突出表格的作用)

  [设计意图:激发学生的学习兴趣,初步感知规律,彰显表格法解决问题的作用,唤起学生的解题策略,以便在后面的学习中能让学生进行有目的的迁移。]

  二、自主探究,尝试方法

  1.出示例题。

  课件出示例题:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?(师生审题)

  2.揭示课题

  这类题目大家熟悉吗?(板书课题)

  师:题目你能读懂吗? 生:能。 师:告诉了我们哪些已知条件? 生1:共有八个头,二十六只脚。

  生2:还有两个条件:鸡有两只脚,兔有四只脚。 师:很好!还隐藏着两个条件!

  3.学生尝试

  提示学生利用刚才的经验尝试解决。(学生尝试,教师巡视)

  4.组织汇报指名汇报,课件演示。

  5.即时总结[设计意图:让学生尝试列表法,主要是培养了学生有序、全面思考问题的意识。]

  三、模拟操作,再探思路

  1.提出问题

  如果笼内的鸡和兔的只数较多,想想看,用刚才列表的方法去解决,方便吗?

  我们在一起探究用其他的方法来解决。

  2.适时指导

  ⑴观察表格,你有什么发现?

  ⑵脚的总只数每次减少2只,这个2是怎么来的呢?(强调兔多2只脚,4-2=2)

  ⑶出示课件,提示兴趣活动——让兔子站起来。

  3.兴趣活动

  ⑴教师提示:课件演示,并提示用符号表示。

  ⑵学生尝试:画一画,用简单的图示法,让笼内的兔子都站立起来。

  汇报展示

  4.学生汇报,教师演示。

  5.探究思路

  想一想:从下面看,每只兔子少了几只脚?一共少了几只脚?这些脚是怎么来的?

  议一议:小组内交流,应该先算什么,再算什么?

  说一说:解决问题的思路。

  6.独立计算

  自己独立列式计算,指名板演,并说一说想法,并引导学生口头检验。

  7.及时小结:,给这种方法取名,并提示,我们还可以用什么方法解决问题?

  [设计意图:由于假设法是本课学习的难点,在解决假设鸡兔脚的只数一样来初步感知调整策略时,需要老师适时地站出来引领学生进行探索,通过一些有效的数学模型,来帮助学生建立一个个解决问题的台阶,使他们的研究有强力的后盾。我通过课件的生动演示,搭建从形象思维过渡到抽象思维的桥梁,再由学生动手用简单的符号画一画,搭建平台,帮助学生建立解决问题的台阶。既突破了难点,又掌握了方法,还体验了成功。]

  四、合作探究,拓展思路

  1. 师提示用方程方法解决。

  2. 合作探究:

  ⑴集体讨论:题中有哪些等量关系?

  ⑵出示导航:你想设谁的只数为X?那么另一种动物的只数如何表示呢?他们脚的只数又是分别如何表示?

  ⑶小组讨论。

  3.小组汇报。

  4.学生尝试列出方程。(指名回答,教师板书)

  5.师生讨论解方程的思路。(强调将方程化简)

  6.学生独立解方程,指名板演。

  7.检验,并小结。

  [设计意图:学生在五年级已学会列方程解应用题,由于这种方法思路清晰,易于理解。因此老师注意引导学生明确等量关系,使学生体会代数方法解决此类问题的一般性和便捷性。]

  五、灵活运用,解决问题

  1.出示相关信息,了解中国古代关于“鸡兔同笼”问题的研究情况。

  2.学生运用自己最感兴趣的方法独立解答“龟鹤问题”。

  有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

  3. 组织汇报。

  [设计意图:利用相关知识信息,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,进一步促进提升了学生的学习热情,悄然激发学生课下去寻求多种解决问题的方法。这个练习的设计,为真正做到面向全体学生,仅仅是将鸡兔换成龟鹤,巩固学生解决此类问题的方法,夯实学生的认知基础。]

  六、总结反思,畅谈收获

  学生自主总结解决此类问题的方法。

  [设计意图:通过对解决问题的方法的回顾反思,让学生感受到不同方法的思维特点,帮助学生及时提炼用假设策略解决实际问题的步骤,巩固学生的数学模型,丰富学生的数学思想,更有利于学生今后独立运用策略解决实际问题能力的提高。]

  七、课后拓展,巩固提升

  寻求更多的解决“鸡兔同笼”问题的方法。

  [设计意图:解决此类问题的方法是多种多样的。寻求方法不仅仅是课堂上所完成的任务,将数学的学习延伸课外,利于再次拓展学生的学习时空,突出课标 “不同的人在数学上有不同的发展”的理念]

鸡兔同笼教案设计人教版第2篇

  教学目标:

  本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。在“鸡兔同笼”的活动中,通过列表枚举方法,解决鸡与兔的数量问题。

  教学重点:尝试用不同的方法解决鸡兔同笼问题,对尝试法有所了解和体验,并使学生

  体会假设方法解决此类问题的优越性。

  教学难点:在解决问题的过程中培养学生的逻辑推理能力。

  教具准备:电脑课件

  教学过程:

  一、创设问题情景

  师:同学们今天老师带来2幅动物的图片请你们欣赏一下,看这是什么?(出示公鸡图片)这幅呢?(出示兔子图片)

  师;这是两种同学们很熟悉的小动物。

  师:一只鸡有几个头,几只脚?一只兔子有几个头?几只脚?一只兔子比一只鸡多几只脚,一只鸡比一只兔子多几只脚?

  师:看来这几个问题对于你们来说太简单了。老师这儿还有一个有关于鸡兔的有趣问题我们一起来看看。

  课件出示:

  “今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

  师:这个有趣的问题出自于我国大约在1500年前唐代的一部算书《孙子算经》。谁来读一读?

  师:你们明白这句话的意思吗?

  (如果学生说不出师可说,师:这句话的意思是,有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,“鸡兔同笼”问题是我国古代数学名题之一。这节课我们就一起来研究鸡兔同笼问题。(板书课题)同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!

  如果生能说出这句话的意思。师:看来你了解的知识可真多。“鸡兔同笼”问题是我国古代数学名题之一。这节课我们就一起来研究鸡兔同笼问题。(板书课题)同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!

  )

  二、解决问题

  1、好!请看屏幕。课件出示

  出示课件:鸡兔同笼,有20个头,54条腿,鸡、兔各有几只?

  师;谁来读一读题目中的数学信息和数学问题。

  2、师:请同学们先想一想,如何解决这个问题?

  师:把你的想法,解决问题的过程写在本子上。

  3、生在做题时,师在注意巡视,选择有代表性的做法。

  4、展示学生的答案。

  实验投影展示

  10分钟后进入小组汇报、集体交流阶段。

  小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78只,太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

  (也许学生不知道这是用列表法解决问题,师你能给你这种解决问题的方法起个名字吗?)

  师:还有哪些小组采用不同的列表法?

  小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

  小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

  师:这三个小组的同学都采用了列表的方法来解决问题,你们为什么要采用列表的方法解决这样的问题呢?

  生1:列表可以帮助我们一一举例,从中找出需要的答案。

  生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

  师:同样采用列表的方法解决这个问题,可这三种列表的方法又有什么不同呢?

  生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

  生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

  师:在采用列表法解决这个问题的同时,还采用了一种解决问题的方法,你们知道采用了什么方法吗?

  师:对!还采用了假设的方法。

  师:同样采用列表、假设的方法解决这个问题,可是解决问题的过程却有不同。如果现在让你选择其中一种列表的方法解决鸡兔同笼问题,你会选择哪种列表解决问题的方法?为什么?

  师:小结:同学说得都很有道理,同样选择列表的方法,我们可根据题目的实际条件,选择适当的方法取中列举的方法,由于鸡与兔共20只,所以各取10只,接着在举例中根据实际的数据情况确定举例的方向,这样可以大大缩小举例的范围。快又准确地寻找到我们需要的答案。

  4、有其他的解法吗?(老师让举手的其中三名学生上台板演)

  生5:假设20只都是鸡,那么兔有:(54-20×2)÷(4-2)=7(只),鸡有20-7=13(只)。

  生6:假设20只都是兔,那么鸡有:(4×20-54)÷(4-2)=13(只),兔有20-13=7(只)。

  5、生还可能采用画图的方法。

  师:同学太聪明了,想出了这么多好办法,我们可以选择画图、列表、假设等方法解决问题,在这些方法中我们可以选择取中列表法。在列表时应注意如何设计表头:

  现在大家就根据列表的方法解决一些问题吧!

  三、自主练习

  同学们可以用列表的方法独立地尝试解决。

  1、鸡兔同笼,有17个头,42条腿,鸡、兔各几只?请你列表的方法解决。(想一想怎样设计表头)

  (例题中的表格老师已经设计了表头,练习题中,放手让学生根据已有的经验自己设计,培养学生数据的收集、整理能力。)

  2、同学们的材料袋里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?

  生做题后汇报自己解决问题的方法,师问:你为什么选择这种解决问题的方法?

  师小结:通过以上的练习可以看出同学们能够根据不同的题目选择列表假设的方法解决有关于鸡兔同笼的问题。

  四、小结:

  师:通过这节课的学习,你有什么收获?

  总结:这节课同学们采用了不同解决问题的方法解决了我国古代数学名题之一“鸡兔同笼的问题”。希望同学们今后在学习中也能象今天一样肯于动脑,勤于思考,选择合适的方法解决实际问题。

鸡兔同笼教案设计人教版第3篇

  教学内容:

  人教版课程标准实验教科书四年级下册第103-105页内容。

  教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、尝试用不同的方法解决“鸡兔同笼”问题,

  3、在解决问题的过程中培养学生逻辑推理能力。

  教学重点:

  尝试用假设法解决“鸡兔同笼”这类问题。

  教学过程:

  一、课前游戏,导入课题。

  二、创设情境,提出问题。

  1、出示原题:

  师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!

  (电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

  2、理解题意:

  师:同学们,你们知道这道题的意思吗?谁愿意试着说一说!生:这道题的意思就是:今天有鸡和兔在一个笼子里,上面有35个头,下面有94只脚,问鸡和兔各有多少只?

  师:大家同意吗?

  (电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)

  3、揭示课题:

  师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。

  三、自主探索,解决问题

  1、(出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

  2、分析并理解题意:

  (1)从上面数,有8个头就是说鸡和兔的头一共有8个。(也就是说鸡和兔一共有8只。)

  (2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。

  (3)问题是什么?(鸡和兔各有多少只?)

  3、猜一猜:随学生猜想板书并验证。

  4、介绍列表法:

  师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)

  小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。

  5、介绍假设法:

  当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。

  (1、)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。

  (2、)假设全是兔:先我们用假设全是鸡的办法解决了这个问题,现在假设全是兔有应该怎么分析和解决这个问题呢?同学们可以同桌边讨论边写算式?

  小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)

  6、介绍孙子算经(抬脚法)

  四、课堂练习

  课本做一做“龟鹤问题”。

  五、课堂小结

  这节课你学到了什么?

  板书设计

  鸡兔同笼猜想法列表法假设法抬脚法

相关文章

《两位数加一位数整十数试讲稿》

《二年级长度单位教案第二课时》

《体积和体积单位教学过程》

相关教案