幼儿园学习网

展开

首页>数学教案

角的平分线的性质内容是什么

栏目:数学教案

这是角的平分线的性质内容是什么,是优秀的数学教案文章,供老师家长们参考学习。

角的平分线的性质内容是什么

角的平分线的性质内容是什么第 1 篇

本节课的设计思路是从回顾三角形中的角平分线出发,再通过折纸探索平分一个角,提出遇到不能对折的木板或钢板类角时如何平分的问题,引出角平分仪,进而类比介绍角平分线的作法。对于角的平分线的性质的探究,我是按操作、猜想、验证的学习过程进行,先让学生通过折纸,提出思考问题,鼓励学生思考,作出猜想,然后将它转化为数学问题,让学生围绕着问题而展开验证猜想,从而得出结论。

  整节课都以学生为主,自己操作、探究、合作贯穿始终,在教学过程中给学生的思考留下了充足的时间和空间,由学生自己去发现结论,学生在经历“将显示问题转化为数学问题”的过程,从而能对角的平分线的性质有更深刻的认识,同时培养学生动手、合作、概括能力,进而提高学生的思维水平和应用数学知识解决实际问题的意识。

  可惜对学生的基础知识和基本能力估计不足,前面探究角的平分线的画法花时过多,造成后面对角的平分线的性质的探究,特别是验证猜想和归纳结论显得过于仓促。

角的平分线的性质内容是什么第 2 篇

1、清楚学生已有的数学知识

  这一点对于刚刚参加工作4年的'我来说,往往是在教学后才能更好地把握的。比如本节的内容,要让学生自己经过探究总结出“角的平分线的性质”,学生们在归纳时能说出“角的平分线上的点,向角两边作垂线段,垂线段的长度相等。”但却不能将垂线段的长度,与点到直线的距离联系在一起,从而在得出性质定理时,出现了一些困难,就是因为我没有充分考虑学生对原有知识的认识,在布置预习作业时没有让学生回忆什么是点到直线的距离。发现这个问题之后,我在2班布置预习作业时,就提起了注意,从而让教学顺利的进行了下去。

  在教学过程中,我们首先要做到的就是理解学生,清楚学生学习数学的基础、潜能、需求与差异,清楚学生已有的数学知识、新的知识生长点与潜在的困难,使教学更合理,帮助学生顺利的进行知识建构。如果离开对学生现状的准确把握,教学设计就很难达到理想的效果。

  2、理解学生的认知规律

  本节课的目标之一就是:会用尺规作图的方法,画任意角的平分线。如何让学生理解、记住作法,从而掌握画角平分线的方法呢?

  我由“平分角的仪器”入手,让学生们自己发现仪器的原理,从中得到启发,画一个角的平分线关键是找到满足条件的三个点,学生能理解到这儿,就能自己找到方法并画出角平分线。也就让学生的学习处在一种自然生成的状态。新知识的发生、形成、应用,不是教师强加于学生的,是符合他们的认知规律的。

  二、理解教材,让教学设计由教材“生长”

  本节内容教材在编排时构建了一个完整的探究活动,教学中应让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,动手操作,得出猜想,并进一步进行推理论证,感受结论的合理性,体现数学研究的严谨性。

  我在设计性质探究这个环节时,充分的挖掘了教材,一步一步的引导学生深入思考,环环相扣、循序渐进,以问题为载体,逐步要求学生独立分析、形成完整的证明过程,从而训练了学生推理论证的能力。

  教材的结构体系、内容顺序是反复考量的,语言是反复斟酌的,例题是反复打磨的,习题是精挑细选的。教学设计时需要理解教材,理解教材内容、编排意图,重视教材的特色栏目,善于将教材内容“生长”开去,教师应深入理解数学知识的本质、结构,进而把知识教“活”,促进学生丰富或调整原有的认知结构,让学生顺利开展数学活动,进行知识建构。

  三、理解教学,让教学设计更有效

  教学设计时需要理解教学,重视教学过程、教学方式、课堂提问的设计,才能优化学生主动建构知识的过程,使学生学会学习。

  1、重视教学活动的设计

  本课教学时有一个突出的特点,设计了问题串,教师的提问一定要有针对性、启发性,这些问题环环相扣,循序渐进,让数学定理的归纳过程、命题的发现过程充分“暴露”给学生。

  学生在经历观察、猜想、验证、证明的数学活动中,发展合情推理能力,并能有条理、清晰地阐述自己的观点。这正是培养学生数学素养,发展学生能力的有效方式。只有这样,才能让学生在掌握知识的同时,经历一个主动发现问题、提出问题、分析问题、解决问题的完整过程,才能克服教学中只重数学结果的倾向,实现从“被动的接受”到“主动地建构”的转变,让课堂涌动着生命的灵性。

  2、重视数学方法的渗透

  数学教学不仅要让学生学会知识,更要让学生掌握解决问题的基本方法,这就是大家常说的“授人以鱼,不如授人以渔”。

  如本节课的例题,可以用两步全等的方法,也可以结合本节课的新内容,这样就只需证一步全等。让学生体会证明线段等、角等,可以用全等的方法,当然也可以用角平分线的性质,将来还会有别的思路,这样的总结,能帮助学生整理做题思路,不会在解决问题时一脸茫然、无从下手。

角的平分线的性质内容是什么第 3 篇

一、教学目标

【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

【过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。

【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验。

二、教学重难点

【重点】角的平分线的性质的证明及应用。

【难点】角的平分线的性质的探究。

三、教学过程

(一)导入新课

1.复习角平分线的画法

2.利用PPT创设情景:

如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?

(二)生成新知

探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演.教师纠正答案)

如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.

0011.jpg

∴△PDO≌△PEO(AAS)

∴PD=PE.

(三)深化新知

思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)

(四)应用新知

1.例题:解决导入中PPT的问题

2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中PD=PE.

0012.jpg

(五)小结作业

小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

角的平分线的性质内容是什么第 4 篇

教学目标角的平分线教案设计

  1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.

  2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.

  3.渗透角平分线是满足特定条件的点的集合的思想。

  教学重点和难点

  角平分线的性质定理和逆定理的应用是重点.

  性质定理和判定定理的区别和灵活运用是难点.

  教学过程设计

  一、角平分钱的性质定理与判定定理的探求与证明

  1,复习引入课题.

  (1)提问关于直角三角形全等的判定定理.

  (2)让学生用量角器画出图3-86中的∠AOB的角

  平分线OC.

  2.画图探索角平分线的性质并证明之.

  (1)在图3-86中,让学生在角平分线OC上任取一

  点P,并分别作出表示P点到∠AOB两边的距离的线段

  PD,PE.

  (2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.

  (3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.

  3.逆向思维探求角平分线的判定定理.

  (1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.

  (2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.

  (3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.

  4.理解角平分线是到角的两边距离都相等的点的集合.

  (1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).

  (2)在角的内部,到角的.两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).

  由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.

  二、应用举例、变式练习

  练习1填空:如图3-86(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA于D

  PE⊥OB于E.∴—————————(角平分线的性质定理).

  (2)∵PD⊥OA,PE⊥OB,——————————∴ OP平分∠AOB(—————————————)

  例1已知:如图3-87(a), ABC的角平分线BD和CE交于F.

  (l)求证:F到AB,BC和 AC边的距离相等;

  (2)求证:AF平分∠BAC;

  (3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;

  (4)怎样找△ABC内到三边距离相等的点?

  (5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图3—87(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个?

  说明:

  (1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.

  (2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。

  (3)引导学生对题目的条件进行类比联想(第(5)题),观察结论如何变化,培养发散思维能力.

  练习2已知△ABC,在△ABC内求作一点P,使它到△ABC三边的距离相等.

  练习 3已知:如图 3-88,在四边形 ABCD中, AB=AD, AB⊥BC,AD⊥DC.求证:点 C在∠DAB的平分线上.

  例2已知:如图 3- 89,OE平分∠AOB,EC⊥OA于 C,ED⊥OB于 D.求证:(1)OC=OD;(2)OE垂直平分CD.

  分析:证明第(1)题时,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分线的性质定理得到 OC=OD.这样处理,可避免证明两个三角形全等.

  练习4 课本第54页的练习。

  说明:训练学生将生活语言翻译成数学语言的能力.

  三、互逆命题,互逆定理的定义及应用

  1.互逆命题、互逆定理的定义.

  教师引导学生分析角平分线的性质,判定定理的题设、结论,使学生看到这两个命题的题设和结论正好相反,得出互逆命题、互逆定理的定义,并举出学过的互逆命题、互逆定理的例子.教师强调“互逆命题”是两个命题之间的关系,其中任何一个做为原命题,那么另一个就是它的逆命题.

  2.会找一个命题的逆命题,并判定它是真、假命题.

  例3写出下列命题的逆命题,并判断(1)~(5)中原命题和它的逆命题是真命题还是假命题:

  (1)两直线平行,同位角相等;

  (2)直角三角形的两锐角互余;

  (3)对顶角相等;

  (4)全等三角形的对应角相等;

  (5)如果|x|=|y|,那么x=y;

  (6)等腰三角形的两个底角相等;

  (7)直角三角形两条直角边的平方和等于斜边的平方.

  说明:注意逆命题语言的准确描述,例如第(6)题的逆命题不能说成是“两底角相等的三角形是等腰三角形”.

  3.理解互逆命题、互逆定理的有关结论.

  例4 判断下列命题是否正确:

  (1)错误的命题没有逆命题;

  (2)每个命题都有逆命题;

  (3)一个真命题的逆命题一定是正确的;

  (4)一个假命题的逆命题一定是错误的;

  (5)每一个定理都一定有逆定理.

  通过此题使学生理解互逆命题的真假性关系及互逆定理的定义.

  四、师生共同小结

  1.角平分线的性质定理与判定定理的条件内容分别是什么?

  2.三角形的角平分线有什么性质?怎样找三角形内到三角形三边距离相等的点?

  3.怎样找一个命题的逆命题?原命题与逆命题是否同真、同假?

  五、作业

  课本第55页第3,5,6,7,8,9题.

  课堂教学设计说明

  本教学设计需2课时完成.

  角平分线是符合某种条件的动点的集合,因此,利用教具,投影或计算机演示动点运动的过程和规律,更能展示知识的形成过程,有利于学生自己观察,探索新知识,从中提高兴趣,以充分培养能力,发挥学生学习的主动性.

相关文章

《一年级加减混合教学评课》

《笔算三位数乘两位数教案》

《体积和体积单位教学评课》

相关教案