幼儿园学习网

展开

首页>数学教案

初中数学平方根

栏目:数学教案

这是初中数学平方根,是优秀的数学教案文章,供老师家长们参考学习。

初中数学平方根

初中数学平方根第1篇

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的`公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初中数学平方根第2篇

  1、选择题

  1.16的平方根是( )

  A.4 B.±4 C.8 D.±8

  2.25的算术平方根是( )

  A.5 B.﹣5 C.±5 D.

  3.4的算术平方根是( )

  A.﹣2 B.2 C.﹣ D.

  4.4的算术平方根是( )

  A.±2 B.2 C.﹣2 D.

  5.9的平方根是( )

  A.±3 B.± C.3 D.﹣3

  6.下列说法正确的.是( )

  A.|﹣2|=﹣2 B.0的倒数是0

  C.4的平方根是2 D.﹣3的相反数是3

  7.±2是4的( )

  A.平方根 B.相反数 C.绝对值 D.算术平方根

  8.(﹣3)2的平方根是( )

  A.3 B.﹣3 C.±3 D.9

  9.a2的算术平方根一定是( )

  A.a B.|a| C. D.﹣a

  10.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )

  ①m是无理数;

  ②m是方程m2﹣12=0的解;

  ③m满足不等式组 ;

  ④m是12的算术平方根.

  A.①② B.①③ C.③ D.①②④

  2、求下列各式中的x.

  (1)8x3+27=0

  (2)x4-5=

  (3)(x+2)3+1=

  (4)(x-1)3=-

  3、已知一个正方形ABCD的面积是4a2 cm2,点E、F、G、H分别为正方形ABCD各边的中点,依次连结E、F、G、H得一个正方形.

  (1)求这个正方形的边长.

  (2)求当a=2 cm时,正方形EFGH的边长大约是多少厘米?(精确到0.1cm)

初中数学平方根第3篇

  平方根概括

  显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

  如果一个数的平方等于a,那么这个数叫做a的平方根。0的平方根是0。负数在实数范围内不能开平方,只有在正数范围内,才可以开平方根。例如:-1的平方根为i,-9的'平方根为3i。

  平方根包含了算术平方根,算术平方根是平方根中的一种。

  平方根和算术平方根都只有非负数才有。

  被开方数是乘方运算里的幂。

  求平方根可通过逆运算平方来求。

  开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

  若x的平方等于a,那么x就叫做a的平方根,即√a=x

  重点与难点分析

  本节重点是平方根和算术平方根的概念.平方根是开方运算的基础,是引入无理数的准备知识.平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,并且直接影响到二次根式的学习. 算术根的教学不但是本章教学的重点,也是今后数学学习的重点.在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。

  本节难点是平方根与算术平方根的区别于联系.首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同.对于平方根运算不仅数

  3.本节主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念.另外在文字叙述时注意语言的严谨规范,.

  知识归纳:如果一个正数的平方等于a,那么这个正数x叫做a的算术平方根,a叫做被开方数。

相关文章

《1000以内数的认识教学过程》

《从分数到分式公开课》

《体积单位间的进率优质课教案》

相关教案