幼儿园学习网

展开

首页>数学教案

相交线教案人教版

栏目:数学教案

这是相交线教案人教版,是优秀的数学教案文章,供老师家长们参考学习。

相交线教案人教版

相交线教案人教版第1篇

  教学目标:

  1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

  2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

  教学重点与难点:

  重点:邻补角与对顶角的概念.对顶角性质与应用

  难点:理解对顶角相等的性质的探索

  教学设计:

  一.创设情境:激发好奇,观察剪刀剪布的过程,引入两条相交直线所成的角

  在我们的生活中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。观察剪刀剪布的过程,引入两条相交直线所成的角。

  学生观察、思考、回答问题

  教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

  教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题

  二.认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达;有公共的顶点O,而且的两边分别是两边的反向延长线

  2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

  (学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

  3学生根据观察和度量完成下表:

  两条直线相交所形成的角分类位置关系数量关系

  教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗

  4.概括形成邻补角、对顶角概念和对顶角的性质

  三.初步应用

  练习:

  下列说法对不对

  (1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角

  (2)邻补角是互补的两个角,互补的两个角是邻补角

  (3)对顶角相等,相等的两个角是对顶角

  学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

  四.巩固运用

  例题:如图,直线a,b相交,,求的度数。

  [巩固练习]

  (教科书5页练习)

  已知,如图,,求:的度数

  [小结]邻补角、对顶角.

  [作业]课本P9-1,2P10-7,8

  [备选题]

  一、判断题:

  如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )

  两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )

  二、填空题

  1如图,直线AB、CD、EF相交于点O,的对顶角是 ,的邻补角是若:=2:3,,则=

  2如图,直线AB、CD相交于点O,则

相交线教案人教版第2篇

[教学目标]

1.

通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

2.

在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

[教学重点与难点]

重点:邻补角与对顶角的概念.对顶角性质与应用

难点:理解对顶角相等的性质的探索

[教学设计]

一.创设情境

激发好奇

观察剪刀剪布的过程,引入两条相交直线所成的角

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题

教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达

有公共的顶点O,而且的两边分别是两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

3学生根据观察和度量完成下表:

两条直线相交

所形成的角

分类

位置关系

数量关系

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗

4.概括形成邻补角、对顶角概念和对顶角的性质

三.初步应用练习:

下列说法对不对

(1)

邻补角可以看成是平角被过它顶点的一条射线分成的两个角

(2)

邻补角是互补的两个角,互补的两个角是邻补角

(3)

对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

四.巩固运用

例题:如图,直线a,b相交,,求的度数。

[巩固练习](教科书5页练习)

已知,如图,,求:的度数

[小结]

邻补角、对顶角.

[作业]课本P9-1,2P10-7,8

[备选题]

一判断题:

如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )

两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )

二填空题

1如图,直线AB、CD、EF相交于点O,的对顶角是

,的邻补角是

若:=2:3,,则=

2如图,直线AB、CD相交于点O

相交线教案人教版第3篇

  学习目标:

  知识目标

  了解两条直线互相垂直的概念;

  2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

  能力目标

  培养提高学生 观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。

  德育目标

  培养学生 辩证唯物主义思想及不断发现,探索新知识的精神。

  情感目标

  通过创设情境,利用变式训练,多种教学 手段来激发学生 学习兴趣,给学生 创造成功的机会,使他们爱学、会学、学会,营造学生 可持续发展的机会。

  重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线

  教具:多媒体、投影仪、自制的可旋转的两根木条等

  [学习目标是从基础知识教学 、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学 要求和各种教学 原则,以及本节的教材内容与学生 的实际确定的。]

  互究策略:(教学 流程)

  一、背景1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;

  2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。

  二、师生互究1.创设问题情境

  师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师 用多媒体或投影仪展示]

  [学生 众说纷纭,教师 应给予充分的肯定]

  师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……

  师:让我们共同探索图甲这种特殊情况。

  [借助于教具,模型,实物,图形及幻灯等教学 手段,使学生 先得到直观的感性认识,培养学生 从感性到理性的认识方式]

  2.回顾再现:对顶角相等

  两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC

  1. 提高:教师 演示自制教具,要求学生 观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。

  [教师 应鼓励学生 大胆描述自己的观察结果,并及时予以肯定。]

  师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?

  生: ……(用度量的方法;利用对顶角相等;互补的概念……学生 回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学 ,培养学生 的抽象思维能力。]

  2. 提升:[教师 引导学生 归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

  师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。

  ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°

  [实现数学的三大语言:文字语言,符号语言,几何语言之间的切换,并板书以突出其重要性]

  5.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……

  [希望实现将数学知识在实际生活中的运用,并为后继数学知识增加感性认知]

  师:请同学们用三角尺或量角器:

  ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?

  ⅱ)设这一点在直线AB上,重作上述过程。

  [学生 分组或独立探索,教师 巡视指导]

  [教师 引导学生 归纳结论]:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

  [通过学生 动手操作画图,教师 在巡视中及时指出、纠正学生 发生的错误,训练学生 以严谨的科学态度研究问题、解决问题。]

  师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义

  [学生 讨论交流,教师 巡视] 师:[引导归纳]

  a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。

  b)、有一条并且只有一条没有第二条。

  师:如图(5)请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。

  [探究性活动是《数学课程标准》的一个重要举措,并为培养学生 的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生 动手操作能力的培养,同时也培养了学生 的合作意识和竞争意识,使学生 更深入理解垂直、垂线的概念。]

  6.学生 探索:[学生 分小组测量,讨论,归纳]如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?[抽小组代表发言]

  7.教师 :[总结 归纳]只有线段AB最短,且当AB与DC垂直时,才最短。

  [教师 引导学生 得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,]

  提高为:线段AB的长度就是点A到直线DC的距离。

  思考:点A到直线DC的距离与点A到点C的距离有什么区别?

  点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的.距离:两点之间线段的长度。

  [从生活实际,从学生 感兴趣,熟悉的问题引导学生 发现垂线的第二个性质,提高学生 学数学的兴趣,并适当体现学数学——用数学——发现数学的思想。]

  三、较量1.P170 1 、 2 、 3 2.应用:[使学生 在相互竞争中,实践应用本节课的知识,分享获取成功的喜悦,并促进学生 积极向上的心理品质]

  ⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。

  ⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。

  [学以致用,学生 做个小小设计师,兴趣盎然,把这节课引入高潮。]

  四、分享:

  a) 两条直线互相垂直的概念;

  b) 如何过已知直线上或已知直线外的一点作唯一的垂线。

  五、探索:① P174 1 、 2

  ③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

相关文章

《7的乘法口诀教学反思二年级》

《一元一次不等式应用教学反思》

《乘法运算定律教学设计第二课时》

相关教案