解直角三角形及其应用教案
栏目:数学教案这是解直角三角形及其应用教案,是优秀的数学教案文章,供老师家长们参考学习。
解直角三角形及其应用教案第1篇
教学设计
一.教学三维目标
(一)知识目标
使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
(二)能力训练点
通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
(三)情感目标
渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点和疑点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.
三、教学过程
(一)知识回顾
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系sinA=abacosA=tanA= ccb
(2)三边之间关系
a2+b2=c2(勾股定理)
(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)探究活动
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题评析
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=2a=6,解这个三角形.
例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=20?B=350,解这个三角形(精确到0.1).
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
完成之后引导学生小结“已知一边一角,如何解直角三角形?”
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.
例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.
(三)巩固练习
在△ABC中,∠C为直角,AC=6,?BAC的平分线AD=4,解此直角三角形。
解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.
(四)总结与扩展
请学生小结:1在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2解决问题要结合图形。 四、布置作业
.p96第1,2题《春雨的色彩》说课稿
一、教材内容分析:
春天里万物复苏,百花争艳、绿草如荫、一派迷人的景色。《春雨的色彩》意境优美,散文诗中绵绵的春雨,屋檐下叽叽喳喳的小鸟,万紫千红的大地,给人以美的陶冶和享受,与此同时启发幼儿通过简洁优美的语言以及相应的情景对话练习感受春天的勃勃生机。激发幼儿热爱大自然的情感,启发幼儿观察、发现自然界的变化,感知春的意韵,并尝试运用多种方法把春雨的色彩表现出来,以此来表达自己的情感体验。
二、幼儿情况分析:
中班下学期的幼儿探究、分析、观察能力有了一定的发展,并且孩子们充满了好奇心和强烈的探究欲,能主动地去探究周围和环境的变化,并且能根据变化运用自己的表达方式将感知到的变化加以表现。同时这个时期的幼儿的语言表达能力及审美能力有一定的发展,孩子们在平时的活动中也积累了许多有关绘画方面的经验在活动展示出来。
三、活动目标:
教育活动的目标是教育活动的起点和归宿,对教育活动起着主导作用,我根据中班幼儿的实际情况制定了一下活动目标:
1、情感态度目标:引导幼儿感受散文诗的意境美。
2、能力目标:发展幼儿的审美能力和想象力。
3、认知目标:帮助幼儿在理解散文的基础上感受春天的生机,知道春雨对万物生长的作用。
四、活动的重点和难点:
重点是:引导幼儿份角色朗诵小动物的对话,感受散文诗的优美,进而丰富
词汇、发展幼儿的观察能力、思维和语言表达能力。
难点是:学习词语“淋、滴、洒、落”、学习春雨的对话、诗句“亲爱的小鸟们,你们说得都对,但都没说全面,我本身是无色的,但我能给春天的大地带来万紫千红”。
五、活动准备:
1、经验准备:课前学会朗诵诗《春天》,并组织幼儿春游,根据天气情况实地观察春雨,让幼儿感受了解春天的有关知识经验。
2、物质准备:小动物头饰、 教学课件、幼儿绘画用纸笔
六、教法:陶行知先生曾经说:“解放儿童的双手,让他们去做去干”所以在本次活动中,我力求对幼儿充分放手,对大限度的激发幼儿的学习兴趣,让他们自己去探究、去发现、去感受,我主要采取了以下教学法:
1、谈话法:在活动得导入环节我运用与幼儿进行有关春天主题的谈话,帮助幼儿积累整理自己积累的有关春天的知识经验。
2、演示法:在活动中我通过多媒体课件向 幼儿展示春天的勃勃生机,《春雨的色彩》散文诗的情景,也是通过课件中轻柔的配乐诗朗诵体现出来的。现代教学辅助手段的'运用进一步强化了他的作用,使幼儿对春天、春雨更加了解和熟悉。
3、情景演示法:将幼儿置身于《春雨的色彩》散文情景中,通过角色表演,强化幼儿对春雨的色彩的感受。
此外我还适时采用了交流讨论法、激励法、审美熏陶法和动静交替法加以整合,使幼儿从多方面获得探索过程的愉悦。
七、学法:
1、多种感官参与法:《新纲要》中明确指出:幼儿能用多种感官动手动脑、探究问题,用适当的方式表达交流探索的过程和结果,本次活动中,幼儿通过观察发现自然界的变化,感知春天的意韵,并尝试引导幼儿运用多种方法把春雨的色彩表现出来,以此来表达自己的情感体验。
2、体验法:心理学指出:凡是人们积极参与体验过的活动,人的记忆效果就会明显提高。在活动中,让幼儿自己进行角色表演,说出小动物们之间的对话,一定会留下深刻的印象,同伴之间合作表演的快乐,也将成为他们永远的回忆。
八、教学过程
活动流程我采用环环相扣来组织活动程序,活动流程为激发兴趣谈春天-----看春雨-------欣赏散文诗------情景表演-------经验总结-------审美延(绘画形式)
1、激发兴趣谈春天
“兴趣是最好的老师”。活动开始我利用谈话形式引导幼儿将自己已有的关于春天的经验进行整理,激发幼儿活动兴趣。
2、看春雨
观看课件《春雨的色彩》前半部分,到春雨姐姐欢迎的最热烈老师说:一天,一群小鸟在屋檐下躲雨,他们在争论一个有趣的话题,你们知道他们在争论什么问题吗?(幼儿回答)对他们在争论:春雨到底是什么颜色的?
这样的设计自然合理,进而引出散文诗《春雨的色彩》
3、欣赏散文诗
(1)完整欣赏后请幼儿把不懂得地方提出来,由幼儿提出来,教师引导讨论,帮助幼儿理解散文诗的内容。
(2)寻找句子、加深印象
给幼儿提出要求,请幼儿找一找诗里描写春雨下到草地上、柳树上、桃树上、杏树上、有菜地里、蒲公英上各用那些词语,通过找,让幼儿学会“淋、滴、洒、落”并学会用小动物的话来朗诵、来回答,促进幼儿积极思维,锻炼幼儿的口语表达能力,强调了重点,理解了难点。
4、情景表演:分角色进行朗诵表演。
5、经验总结:
将本家活动内容的前半部分进行总结,给幼儿一个春天的完整印象。
6、扩展延伸、升华主题
引导幼儿运用手工工具,用绘画的方式将幼儿感受到的《春雨的色彩》散文诗的意境描绘出来,巩固和加深幼儿对春天及春雨的任认知。
解直角三角形及其应用教案第2篇
一.教学目标
1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3.渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
三、教学过程
(一)复习引入
1.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系:sinA=cosB= sinB=cosA= tanA= tanB=
(2)三边之间关系 (勾股定理)
例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)教学过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的`元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
2.教师在学生思考后,继续引导"为什么两个已知元素中至少有一条边?"让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题
例1:已知a、b、c为Rt△ABC的三边,且斜边c=30
a=15,解这个三角形.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
解 ∵sinA=a/c= 1/2
∴ ∠a=30° ∴ ∠B=60°
∴根据勾股定理求出b=
例 2:在Rt△ABC中, ∠B =30°,b=20,解这个三角形.
引导学生思考分析完成后,让学生独立完成
在学生独立完成之后,选出最好方法,教师板书
完成之后引导学生小结"已知一边一角,如何解直角三角形?"
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底
注意:例1中的b和例2中的c都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
4.巩固练习
(1)P74 练习(单班)
(2)P77习题1(双班)
说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(三)总结与扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2.教师点评.
四、布置作业
1 、P84习题1 、2.(单班)
2 、P78习题6(双班)
解直角三角形及其应用教案第3篇
教材分析
本节课在前面研究了解直角三角形的方法,通过例3、例4介绍了利用直角三角形中余弦、正切关系解决有关测量、建筑等方面的实际问题的基础上,结合“在航海中确定轮船距离灯塔有多远”的实际问题介绍解直角三角形的理论在实际中的应用,进一步领悟解直角三角形的知识也是解决实际问题的有效数学工具,在思想和方法上是提升.
学情分析
本节内容的难点是实际问题转化成数学模型,学生学习是有一定难度的。
一、教学目标
知识与技能
1.了解方位角、坡角、坡度;
2. 体会解直角三角形在解决实际问题中有着广泛的作用,进一步理解并掌握直角三角形中各元素之间的内在联系,会用使解直角三角形的有关知识解决简单实际问题,并能对相关知识进行综合应用。
数学思考与问题解决
1.通过画示意图,将实际问题转化成数学问题,体会“数学建模”和“数形结合”的思想。
2.借助示意图,分析实际问题中的数量关系并将其归结为直角三角形中各元素之间的关系,进一步加深理解解直角三角形的本质。
3.通过画出示意图和分析示意图,掌握利用解直角三角形的有关知识解决实际问题的方法,结和“数形结合”的思想,能运用解直角三角形的有关知识、方法解决实际问题,培养学生分析问题和解决问题的能力。
情感态度价值观
体验画示意图的过程,培养学生的动手能力;经历实践—理论—实践的认识过程,激发学生学习兴趣,调动学生学习数学的积极性和主动性,培养学生用数学的意识。
二、教学重点、难点
教学重点
能画示意图,将某些实际问题中的数量关系转化为直角三角形元素之间的关系,从而利用所学知识把实际问题解决。
教学难点
画示意图,将实际问题转化为数学模型的建模过程。
解决办法
通过观察、比较及数形结合的思想方法突破重难点。
三、教学过程
(一)复习引入
1.什么是解直角三角形?
2.直角三角形中除直角外的五个元素间有哪些等量关系呢?
(1)边角之间关系
(2)三边之间关系
(3)锐角之间关系
(二)教学互动
1.引例(复习方位角的画法)
一艘轮船在大海上航行,当航行到 A 处时,观测到小岛 B 的方向是北偏西 35°,那么同时从 B 处观测到轮船在什么方向?若轮船从 A 处继续往正西方向航行到 C处,此时, C 处位于小岛 B 的南偏西 40°方向,你能确定 C 的位置吗?试画图说明.
2.例5 如图,一艘海轮位于灯塔P的北偏东65 方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34 方向上的B处.这 时,海轮所在的B处距离灯塔P有多远(结果取整数)?
解:如图, 在 中,
≈72.505
在 中, ,
,
因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130n mile.
(三)巩固再现(P72练习)
1、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
2. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:
(1)坡角a和β;
(2)坝顶宽AD和斜坡AB的长(精确到0.1m)
B
A
D
F
E
C
6m
α
β
i=1:3
i=1:1.5
(四)反思归纳
1.回顾利用直角三角形的知识解决实际问题的过程,你认为一般步骤是什么?关键是什么?
利用解直角三角形的知识解决实际问题的一般过程是:
(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角函数等去解直角三角形;
(3)得到数学问题的解;
(4)得到实际问题的解.
2. 有的同学说,类似于方程、函数、不等式,解直角三角形的知识也是解决实际问题的有效数学工具,对此你有什么看法?
(五)小结
1、本节例题学习以后,我们可以得到解直角三角形的两种基本图形:
A
B
B
C
C
D
D
A
2、数学思想:转化思想;模型思想
3、解直角三角形的关键是找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作辅助线构筑直角三角形(作某边上的高是常用的辅助线);当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题化归为直角三角形中的边角关系.
4、一些解直角三角形的问题往往与其他知识联系,所以在复习时要形成知识结构,要把解直角三角形作为一种工具,能在解决各种数学问题时合理运用.
四、布置作业
P84 7、9
板
书
设
计
应用举例(二)
(一)复习引入
1、解直角三角形指什么?
2、解直角三角形主要依据什么?
(1)勾股定理理:
(2)锐角之间的关系:
(3)边角之间的关系:
(二)教学互动
3、引例
4、例5
(三)巩固再现
5、练习(P72练习)
(四)反思归纳
(五)小结